摘要:
A memory device includes a substrate having common source regions thereon, common source lines extending along a surface of the substrate and contacting the common source regions, respectively, and channel structures extending away from the surface of the substrate between the common source lines. The common source lines define a unit cell of the memory device therebetween. The memory device further includes an electrode stack structure having interlayer insulating layers and conductive electrode layers that are alternately stacked along sidewalls of the channel structures. The conductive electrode layers define respective gates of selection transistors and memory cell transistors of the memory device. An isolation insulating layer, which includes a portion of a sacrificial layer, is disposed between adjacent ones of the interlayer insulating layers in the stack structure. The isolation insulating layer divides at least one of the conductive electrode layers in the stack structure into electrically separate portions.
摘要:
Provided is a vertical non-volatile memory device in which a capacitor constituting a peripheral circuit region is formed as a vertical type so that an area occupied by the capacitor in the entire device can be reduced as compared with a planar capacitor. Thus, a non-volatile memory device may be highly integrated and have a high capacity. The device includes a substrate having a cell region and a peripheral circuit region, a memory cell string including a plurality of vertical memory cells formed in the cell region and channel holes formed to penetrate the vertical memory cells in a first direction vertical to the substrate, an insulating layer formed in the peripheral circuit region on the substrates at substantially the same level as an upper surface of the memory cell string, and a plurality of capacitor electrodes formed on the peripheral circuit region to penetrate at least a portion of the insulating layer in the first direction, the plurality of capacitor electrodes extending parallel to the channel holes. The plurality of capacitor electrodes are spaced apart from one another in a second direction parallel to the substrate, and the insulating layer is interposed between a pair of adjacent capacitor electrodes from among the plurality of capacitor electrodes.
摘要:
According to example embodiments of inventive concepts, a semiconductor device includes: a substrate, and a stacked structure including interlayer insulating layers and gate electrodes alternately stacked on the substrate. The stacked structure defines a through-hole over the substrate. The gate electrodes each include a first portion between the through-hole and a second portion of the gate electrodes. A channel pattern may be in the through-hole. A tunneling layer may surround the channel pattern. A charge trap layer may surround the tunneling layer, and protective patterns may surround the first portions of the gate electrodes. The protective patterns may be between the first portions of the gate electrodes and the charge trap layer.
摘要:
A high-efficiency light emitting diode including: a semiconductor stack positioned on a support substrate, including a p-type compound semiconductor layer, an active layer, and an n-type compound semiconductor layer; an insulating layer disposed in an opening that divides the p-type compound semiconductor layer and active layer; a transparent electrode layer disposed on the insulating layer and the p-type compound semiconductor layer; a reflective insulating layer covering the transparent electrode layer, to reflect light from the active layer away from the support substrate; a p-electrode covering the reflective insulating layer; and an n-electrode is formed on top of the n-type compound semiconductor layer. The p-electrode is electrically connected to the transparent electrode layer through the insulating layer.
摘要:
Provided is a high-efficiency light emitting diode (LED) that includes: a support substrate; a semiconductor stack positioned on the support substrate, the semiconductor stack including a p-type compound semiconductor layer, an active layer, and an n-type compound semiconductor layer; a first electrode positioned between the support substrate and the semiconductor stack and in ohmic contact with the semiconductor stack; a first bonding pad positioned on a portion of the first electrode that is exposed outside of the semiconductor stack; and a second electrode positioned on the semiconductor stack. Protrusions are formed on exposed surfaces of the semiconductor stack. In addition, the second electrode may be positioned between the first electrode and the support substrate and contacted with the n-type compound semiconductor layer through openings of the semiconductor stack.
摘要:
Disclosed herein is a high efficiency light emitting diode. The light emitting diode includes: a semiconductor stack positioned over a support substrate; a reflective metal layer positioned between the support substrate and the semiconductor stack to ohmic-contact a p-type compound semiconductor layer of the semiconductor stack and having a groove exposing the semiconductor stack; a first electrode pad positioned on an n-type compound semiconductor layer of the semiconductor stack; an electrode extension extending from the first electrode pad and positioned over the groove region; and an upper insulating layer interposed between the first electrode pad and the semiconductor stack. In addition, the n-type compound semiconductor layer includes an n-type contact layer, and the n-type contact layer has a Si doping concentration of 5 to 7×1018/cm3 and a thickness in the range of 5 to 10 um.
摘要:
A semiconductor device includes tunneling insulating layers on active regions of a substrate, floating gate electrodes on the tunneling insulating layers, an isolation trench within the substrate and the isolation trench defines the active region, spaces the tunneling insulating layers, and isolates the floating gate electrodes. A bottom of the isolation trench is directly in contact with the substrate. The semiconductor device further includes a lower insulating layer on the floating gate electrodes, and a middle insulating layer, an upper insulating layer, and a control gate electrode stacked on the lower insulating layer. The lower insulating layer is configured to hermetically seal a top portion of the isolation trench to define and directly abut an air gap within the isolation trench.
摘要:
A method and apparatus to efficiently transmit data. The method and apparatus effectively aggregate data and transmit the data in a high-speed power line communication (PLC) network. The method of transmitting the data includes combining each of at least one or more data units transferred from an upper layer, with a field to indicate attribute information of the data unit, dividing the combined data units and fields into frame blocks of an identical size, and aggregating the divided frame blocks and transferring the aggregated frame blocks as one frame to a PHY layer. In this way, data units of a variety of types and sizes transferred from the upper layer are aggregated and transmitted as the one frame.
摘要:
The present invention provides an insulated wire having a conductor and at least two insulating coating layers formed surrounding the conductor, wherein the insulating coating layers comprises the outermost layer thereof, which has a thickness in the range of 20 to 50% based on the total thickness of the insulating coating layers and comprises a polyimide resin; and a base insulating coating layer in contact with the conductor, which has a thickness in a range of 50 to 80% based on the total thickness of the insulating coating layers and comprises a polyamide-imide resin having an adhesion-improving agent. The insulated wire of the present invention has insulating coating layers having superior coating adhesion as well as good heat-resistance.
摘要:
Disclosed is an insulating varnish composition including polyamideimide resin and 1 to 40 parts by weight of surface-treated silica in a sol state per 100 parts by weight of the polyamideimide resin. An insulated layer formed using the insulating varnish composition may have excellent corona discharge resistance, thereby preventing the insulation breakdown.