Abstract:
High-strength microwave antenna assemblies and methods of use are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. Proximal and distal radiating portions of the antenna assembly are separated by a junction member. A reinforcing member is disposed within the junction member to increase structural rigidity.
Abstract:
The present invention is directed to systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy. In one embodiment of the invention a medical device and associated apparatus and procedures are used to treat dermatological conditions using microwave energy.
Abstract:
Implantable devices, instruments, kits and methods for treatment of obesity. One or more devices can be implanted adjacent to or in contact with the stomach to occupy a space to prevent the stomach from expanding into that space as food is taken into the stomach. Alternatively, one or more devices may be implanted and expanded to displace at least a portion of the wall of the stomach to decrease the internal volume of the stomach that is available to receive food. Devices may be anchored to one or more internal structures at one or more locations without piercing through the wall of the stomach. Devices can be implanted using minimally invasive methods, such as percutaneous or laparoscopic methods. Delivery instruments are also provided. An intra-gastric sizing device is provided to facilitate implantation of an extra-gastric device in some method embodiments.
Abstract:
Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
Abstract:
A system applies, in a non-invasive manner, energy to a targeted tissue region employing a controlled source of energy, a multiple use applicator, and a single use, applicator-tissue interface carried by the applicator. The system can generate and apply energy in a controlled fashion to form a predefined pattern of lesions that provide therapeutic benefit, e.g., to moderate or interrupt function of the sweat glands in the underarm (axilla).
Abstract:
An electrosurgical apparatus is provided. The electrosurgical apparatus includes a cannula insertable into a patient and positionable adjacent abnormal tissue. The electrosurgical apparatus includes a microwave antenna that includes a distal end having a radiating section receivable within the cannula and positionable within a patient adjacent abnormal tissue. The microwave antenna is adapted to connect to a source of electrosurgical energy for transmitting electrosurgical energy to the radiating section. A portion of the radiating section substantially encompasses a portion of the abnormal tissue and may be configured to apply pressure thereto. The microwave antenna is actuated to electrocautery treat tissue to reduce blood flow to the abnormal tissue.
Abstract:
The invention relates to heterologous polypeptide expression and secretion by filamentous fungi and vectors and processes for expression and secretion of such polypeptides. More particularly, the invention discloses the use of a signal sequence form an aspartic protease obtained from Trichoderma and referred to as an NSP24 signal sequence.
Abstract:
Methods and apparatuses are provided for reducing sweat production via, for example, the removal, disablement, and incapacitation of sweat glands in the epidermis, dermis and subdermal tissue regions of a patient. In one embodiment, a method of treating a patient is provided which involves identifying a patient having a condition of excessive sweating, positioning an energy delivery device proximate to a skin tissue of the patient and delivering energy to sweat glands to halt secretion of sweat. The energy delivery device may include microwave delivery devices, RF delivery devices, and cryogenic therapy devices. Some embodiments may include using a cooling element for avoiding destruction of non-target tissue and/or a suction device to localize treatment at specific portions of the skin fold.
Abstract:
A light-emitting diode panel fixture including a light guide panel, a light-emitting diode strip at an edge of the light guide panel, a base encompassing the light-emitting diode strip and attached to the light guide panel, and a trim attached to the base.
Abstract:
Systems, methods and devices for creating an effect using microwave energy to specified tissue are disclosed. A system for the application of microwave energy to a tissue includes a signal generator adapted to generate a microwave signal having predetermined characteristics, an applicator connected to the generator and adapted to apply microwave energy to tissue. The applicator includes one or more microwave antennas and a tissue interface, a vacuum source connected to the tissue interface, a cooling source connected to the tissue interface, and a controller adapted to control the signal generator, the vacuum source, and the coolant source. The tissue includes a first layer and a second layer, the second layer below the first layer. The controller is configured so that the system delivers energy such that a peak power loss density profile is created in the second layer.