Abstract:
A microporous gel system for certain applications, including biomedical applications, includes an aqueous solution containing plurality of microgel particles including a biodegradable crosslinker. In some aspects, the microgel particles act as gel building blocks that anneal to one another to form a covalently-stabilized scaffold of microgel particles having interstitial spaces therein. In certain aspects, annealing of the microgel particles occurs after exposure to an annealing agent that is endogenously present or exogenously added. In some embodiments, annealing of the microgel particles requires the presence of an initiator such as exposure to light. In particular embodiments, the chemical and physical properties of the gel building blocks can be controlled to allow downstream control of the resulting assembled scaffold. In one or more embodiments, cells are able to quickly infiltrate the interstitial spaces of the assembled scaffold.
Abstract:
A system and method for the label-free analysis of cells includes a purification device configured to receive a heterogeneous population of cells, the purification device temporarily trapping therein a subpopulation of cells from the heterogeneous population of cells and a cell analysis device positioned downstream of the purification device and configured to measure one or more cellular parameters including cell count, measured cell size, and/or cell morphology. In an alternative embodiment, the subpopulation of cells is analyzed while they are trapped within the purification device.
Abstract:
A system for assaying forces applied by cells includes an optically transparent substrate comprising a soft material having a Young's modulus within the range of about 3 kPa to about 100 kPa. An array of molecular patterns is disposed on a surface of the optically transparent substrate, the molecular patterns include fluorophore-conjugated patterns adherent to cells. The system includes at least one light source configured to excite the fluorophore-conjugated patterns and an imaging device configured to capture fluorescent light emitted from the fluorophore-conjugated patterns. Dimensional changes in the size of the patterns are used to determine contractile forces imparted by cells located on the patterns.
Abstract:
A system for deforming and analyzing a plurality of particles carried in a sample volume includes a substrate defining an inlet, configured to receive the sample volume, and an outlet; and a fluidic pathway fluidly coupled to the inlet and the outlet. The fluidic pathway includes a delivery region configured to receive the plurality of particles from the inlet and focus the plurality of particles from a random distribution to a focused state, a deformation region defining an intersection located downstream of the delivery region and coupled to the outlet, and wherein the deformation region is configured to receive the plurality of particles from the delivery region and to transmit each particle in the plurality of particles into the intersection from a single direction, a first branch fluidly coupled to the deformation region and configured to transmit a first flow into the intersection, and a second branch fluidly coupled to the deformation region and configured to transmit a second flow, substantially opposing the first flow, into the intersection, wherein the first flow and the second flow are configured to induce extension of one or more particles in the plurality of particles.
Abstract:
A method of isolating cells includes providing a microfluidic device having at least one microfluidic channel coupled to an inlet and an outlet, the at least one microfluidic channel comprises at least one expansion region disposed along the length thereof The at least one expansion region is an abrupt increase in a cross-sectional dimension of the at least one microfluidic channel configured to generate a vortex within the at least one expansion region in response to fluid flow. A solution containing a population of cells at least some of which have diameters ≧10 μm flows into the inlet. A portion of cells is trapped within vortex created within the at least one expansion region. The trapped cells may then released from the expansion region.
Abstract:
A system for deforming and analyzing particles includes a substrate defining an inlet, and an outlet; a fluidic pathway fluidly coupled to the inlet and the outlet and defining a delivery region upstream of a deformation region configured to deform particles, wherein the fluidic pathway comprises a first branch configured to generate a first flow, and a second branch configured to generate a second flow that opposes the first flow, wherein an intersection of the first flow and the second flow defines the deformation region; a detection module including a sensor configured to generate a morphology dataset characterizing deformation of the particles, and a photodetector configured to generate a fluorescence dataset characterizing fluorescence of the particles; and a processor configured to output an analysis of the plurality of particles based at least in part on the deformation dataset and the fluorescent dataset for the plurality of particles.
Abstract:
A system for deforming and analyzing a plurality of particles carried in a sample volume includes a substrate defining an inlet, configured to receive the sample volume, and an outlet; and a fluidic pathway fluidly coupled to the inlet and the outlet. The fluidic pathway includes a delivery region configured to receive the plurality of particles from the inlet and focus the plurality of particles from a random distribution to a focused state, a deformation region defining an intersection located downstream of the delivery region and coupled to the outlet, and wherein the deformation region is configured to receive the plurality of particles from the delivery region and to transmit each particle in the plurality of particles into the intersection from a single direction, a first branch fluidly coupled to the deformation region and configured to transmit a first flow into the intersection, and a second branch fluidly coupled to the deformation region and configured to transmit a second flow, substantially opposing the first flow, into the intersection, wherein the first flow and the second flow are configured to induce extension of one or more particles in the plurality of particles.
Abstract:
A particle analysis system includes an inlet; an inertial focusing microchannel disposed in a substrate and having a downstream expanding region at a distal end, where the inlet is connected to a proximal end of the microchannel; a plurality of outlets connected to the microchannel at the downstream expanding region; a plurality of fluidic resistors, where each fluidic resistor is connected to a respective outlet; and a particle analyzer configured to measure a size and a position of particles in the microchannel. A particle sorting system includes an inlet; an inertial focusing microchannel disposed in a substrate and having a downstream expanding region at a distal end, where the inlet is connected to a proximal end of the microchannel; a plurality of outlets connected to the microchannel at the downstream expanding region; and a plurality of fluidic resistors, where each fluidic resistor is connected to a respective outlet.