Abstract:
A process for fabricating a fin-type field effect transistor (FinFET) structure is described. A semiconductor substrate is patterned to form a fin. A spacer is formed on the sidewall of the fin. A portion of the fin is removed, such that the spacer and the surface of the remaining fm together define a cavity. A piece of a semiconductor compound is formed from the cavity, wherein the upper portion of the piece of the semiconductor compound laterally extends over the spacer.
Abstract:
A semiconductor process includes the following steps. A substrate is provided. At least a fin-shaped structure is formed on the substrate and a gate structure partially overlapping the fin-shaped structure is formed. Subsequently, a dielectric layer is blanketly formed on the substrate, and a part of the dielectric layer is removed to form a first spacer on the fin-shaped structure and a second spacer besides the fin-shaped structure. Furthermore, the second spacer and a part of the fin-shaped structure are removed to form at least a recess at a side of the gate structure, and an epitaxial layer is formed in the recess.
Abstract:
A manufacturing method for semiconductor device having metal gate includes providing a substrate having a first semiconductor device and a second semiconductor device formed thereon, the first semiconductor device having a first gate trench and the second semiconductor device having a second gate trench; sequentially forming a high dielectric constant (high-k) gate dielectric layer and a multiple metal layer on the substrate; forming a first work function metal layer in the first gate trench; performing a first pull back step to remove a portion of the first work function metal layer from the first gate trench; forming a second work function metal layer in the first gate trench and the second gate trench; and performing a second pull back step to remove a portion of the second work function metal layer from the first gate trench and the second gate trench.
Abstract:
A process for fabricating a fin-type field effect transistor (FinFET) structure is described. A semiconductor substrate is patterned to form a fin. A spacer is formed on the sidewall of the fin. A portion of the fin is removed, such that the spacer and the surface of the remaining fm together define a cavity. A piece of a semiconductor compound is formed from the cavity, wherein the upper portion of the piece of the semiconductor compound laterally extends over the spacer.
Abstract:
The present invention provides a non-planar FET which includes a substrate, a fin structure, a sub spacer, a gate, a dielectric layer and a source/drain region. The fin structure is disposed on the substrate. The sub spacer is disposed only on a middle sidewall of the fin structure. The gate is disposed on the fin structure. The dielectric layer is disposed between the fin structure and the gate. The source/drain region is disposed in the fin structure. The present invention further provides a method of forming the same.
Abstract:
A manufacturing method for semiconductor device having metal gate includes providing a substrate having a first semiconductor device and a second semiconductor device formed thereon, the first semiconductor device having a first gate trench and the second semiconductor device having a second gate trench; sequentially forming a high dielectric constant (high-k) gate dielectric layer and a multiple metal layer on the substrate; forming a first work function metal layer in the first gate trench; performing a first pull back step to remove a portion of the first work function metal layer from the first gate trench; forming a second work function metal layer in the first gate trench and the second gate trench; and performing a second pull back step to remove a portion of the second work function metal layer from the first gate trench and the second gate trench.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a fin-shaped structure thereon; forming a single diffusion break (SDB) structure in the substrate to divide the fin-shaped structure into a first portion and a second portion; forming a first gate structure on the SDB structure; forming an interlayer dielectric (ILD) layer around the first gate structure; transforming the first gate structure into a first metal gate; removing the first metal gate to form a first recess; and forming a dielectric layer in the first recess.
Abstract:
A method for fabricating semiconductor device includes: forming a first semiconductor layer and an insulating layer on a substrate; removing the insulating layer and the first semiconductor layer to form openings; forming a second semiconductor layer in the openings; and patterning the second semiconductor layer, the insulating layer, and the first semiconductor layer to form fin-shaped structures.
Abstract:
A semiconductor device includes a single diffusion break (SDB) structure dividing a fin-shaped structure into a first portion and a second portion, a first isolation structure on the SDB structure, a shallow trench isolation (STI) adjacent to the SDB structure, and a second isolation structure on the STI. Preferably, the first isolation structure further includes a cap layer on the SDB structure and a dielectric layer on the cap layer.
Abstract:
A manufacturing method of a semiconductor device includes the following steps. An opening is formed penetrating a dielectric layer on a semiconductor substrate. A stacked structure is formed on the dielectric layer. The stacked structure includes a first semiconductor layer partly formed in the opening and partly formed on the dielectric layer, a sacrificial layer formed on the first semiconductor layer, and a second semiconductor layer formed on the sacrificial layer. A patterning process is performed for forming a fin-shaped structure including the first semiconductor layer, the sacrificial layer, and the second semiconductor layer. An etching process is performed to remove the sacrificial layer in the fin-shaped structure. The first semiconductor layer in the fin-shaped structure is etched to become a first semiconductor wire by the etching process. The second semiconductor layer in the fin-shaped structure is etched to become a second semiconductor wire by the etching process.