Abstract:
A gas-discharge display panel includes a third group of electrodes in addition to the first and second groups of electrodes found in a conventional gas-discharge display panel. A series of control discharge spaces are respectively formed at those positions where the third group of electrodes mate with the first group of electrodes. The voltage applied to the first group of electrodes is controlled by utilizing the constant-voltage characteristics of the cells formed between the first and third groups of electrodes.
Abstract:
Method of producing an image display device in which an image display member and light-transmitting cover member having principal surface portion and circumferential edge portion on which a light-shielding layer is formed with a step portion formed between the principal surface portion and the circumferential edge portion are laminated through light-transmitting resin layer formed from a liquid optical resin composition so a light-shielding layer formed surface of the light-transmitting cover member is arranged to face the image display member, when a resin dispenser is moved from one end of the light-shielding layer formed surface of the light-transmitting cover member toward the other end applying the liquid optical resin composition to the light-shielding layer formed surface of the light-transmitting cover member, the application amount of optical resin composition is changed on the principal surface portion of the light-shielding layer formed surface of the light-transmitting cover member and on the light-shielding layer.
Abstract:
A 3D display device and LC barrier are disclosed. The 3D display device comprises a non-polarized light display unit and an LC barrier. The LC barrier comprises a liquid crystal cell arranged at one side of the non-polarized light display unit, and the liquid crystal cell comprises an upper substrate, a lower substrate and a cholesteric liquid crystal layer between the substrates; a first quarter-wave plate provided on the upper substrate; a polarizer provided on the first quarter-wave plate; an absorption axis of the polarizer forms a predetermined angle with a fast axis of the first quarter-wave plate.
Abstract:
Micro discharge devices, methods, and systems are described herein. One device includes a non-conductive material, a channel through at least a portion of the non-conductive material having a first open end and a second open end, a first electrode proximate to a first circumferential position of the channel between the first open end and the second open end, a second electrode proximate to a second circumferential position of the channel between the first open end and the second open end, a discharge region defined by a portion of the channel between the first electrode and the second electrode, an optical emission collector positioned to receive an optical emission from the discharge region, and a discharge shielding component between the discharge region and the optical emission collector.
Abstract:
A silver salt-containing layer containing a silver salt and provided on a support is exposed and developed to form a metal silver portion and a light-transmitting portion, and then the metal silver portion is further subjected to physical development and/or plating to form a conductive metal portion consisting of the metal silver portion carrying conductive metal particles. A method for producing a light-transmitting electromagnetic wave-shielding film which enables production of an electromagnetic wave-shielding material simultaneously having high EMI-shielding property and high transparency in a fine line pattern and also enables mass production of such films at a low cost, and a light-transmitting electromagnetic wave-shielding film obtained by the production method and free from the problem of moire are provided.
Abstract:
An X-ray waveguide showing a small propagation loss and having a waveguide mode with its phase controlled is provided. The X-ray waveguide including: a core for guiding an X-ray in a wavelength band that a real part of the refractive index of a material is 1 or less; and a cladding for confining the X-ray in the core, in which: the X-ray is confined in the core by total reflection at a interface between the core and the cladding; in the core multiple materials having different real parts of the refractive index are periodically arranged; and a waveguide mode of the X-ray waveguide is such that the number of antinodes or nodes of an electric field intensity distribution or a magnetic field intensity distribution of the X-ray coincides with the number of periods of the periodic structure in a direction perpendicular to a waveguiding direction of the X-ray in the core.
Abstract:
A plurality of row electrode pairs and a dielectric layer are formed on a front glass substrate. A plurality of column electrodes forming discharge cells at the intersections with the row electrode pairs in a discharge space is formed on one of a back glass substrate and the front glass substrate. Each of the discharge cells is defined and separated from another discharge cell adjacent thereto in the column direction by a transverse wall of the partition wall provided between the front glass substrate and the back glass substrate. A black- or dark-colored light absorption layer facing the front glass substrate is formed in each non-light emission area including the transverse walls in the discharge space.
Abstract:
A structure and driving method of a plasma display panel is provided, in which an amount of priming particles within a discharge cell increases to reduce discharge lag of address discharge. The structure of the plasma display panel includes a plurality of sustain electrode pairs successively formed on an upper electrode, a plurality of common electrodes formed one by one between a pair of the sustain electrodes, and a dielectric layer formed on the substrate to deposit the sustain electrodes and the common electrodes. The method for driving the plasma display panel includes the steps of applying a common pulse, which is periodically turned on/off, to the common electrodes, applying a scan pulse to one of a pair of the sustain electrodes, and applying an address pulse to the address electrodes when the scan pulse is applied to the one sustain electrode. Thus, since discharge conditions within the discharge cell can be improved, discharge lag less occurs than the related art plasma display panel.
Abstract:
A plasma display apparatus is capable of enhancing the heat dissipating ability of a plasma display panel, and of reducing the total weight of the plasma display apparatus. The plasma display apparatus comprises a plasma display panel, a frame to which the plasma display panel is attached and by which the plasma display panel is supported, and a boss plate fixed to a rear surface of the frame and fitted with driving circuit boards. The frame is formed in the shape of a rectangular frame which contacts edges of the plasma display panel. A vertical member is vertically disposed in the rectangular frame. The vertical member has wall-mounted bosses which support the total weight of the plasma display apparatus. Other features include a thermally conductive member formed on the rear surface of the frame, and formation of an air passage between the thermally conductive member and the driving circuit boards.
Abstract:
A plasma display panel has a pair of substrates placed opposite each other with a discharge space in between, electrodes formed on an inner face of one of the pair of substrates, a dielectric layer covering the electrodes, and a protective layer covering the dielectric layer, a discharge gas filling the discharge space. The protective layer includes a cesium-based complex oxide.