Abstract:
To manufacture a coating for an article for a semiconductor processing chamber, the article including a body of at least one of Al, Al2O3, or SiC, and a ceramic coating on the body. The ceramic coating includes a compound comprising Y2O3 in a range from about 50 mol % to about 75 mol %, ZrO2 in a range from about 10 mol % to about 30 mol %, and Al2O3 in a range from about 10 mol % to about 30 mol %, wherein the number of nodules per inch is in a range from about 30 nodules to about 45 nodules and the porosity is in a range from about 2.5% to about 3.2%.
Abstract translation:为了制造用于半导体处理室的制品的涂层,该制品包括Al,Al 2 O 3或SiC中的至少一种的主体和在主体上的陶瓷涂层。 陶瓷涂层包括包含约50mol%至约75mol%范围内的Y 2 O 3,约10mol%至约30mol%范围内的ZrO 2和约10mol%至约30mol%范围内的Al 2 O 3的化合物 mol%,其中每英寸的结节数在约30个结节到约45个结节的范围内,孔隙率在约2.5%至约3.2%的范围内。
Abstract:
Embodiments of substrate supports are provided herein. In some embodiments, a substrate support for use in a chemical vapor deposition (CVD) chamber includes: a pedestal to support a substrate, wherein the pedestal includes a dielectric plate coupled to a pedestal body; a rotary union coupled to the pedestal, wherein the rotary union includes a stationary housing disposed about a rotor; a drive assembly coupled to the rotary union; a coolant union coupled to the rotary union and having a coolant inlet fluidly coupled to coolant channels disposed in the pedestal via a coolant line; an RF rotary joint coupled to the coolant union and having an RF connector configured to couple the pedestal to an RF bias power source; and an RF conduit that extends from the RF connector to the pedestal through a central opening of the pedestal body to provide RF bias to the pedestal.
Abstract:
A plasma reactor has a cylindrical microwave cavity overlying a workpiece processing chamber, a microwave source having a pair of microwave source outputs, and a pair of respective waveguides. The cavity has first and second input ports in a sidewall and space apart by an azimuthal angle. Each of the waveguides has a microwave input end coupled to a microwave source output and a microwave output end coupled to a respective one of the first and second input ports, a coupling aperture plate at the output end with a rectangular coupling aperture in the coupling aperture plate, and an iris plate between the coupling aperture plate and the microwave input end with a rectangular iris opening in the iris plate.
Abstract:
Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.
Abstract:
Exemplary semiconductor processing chamber showerheads may include a dielectric plate characterized by a first surface and a second surface opposite the first surface. The dielectric plate may define a plurality of apertures through the dielectric plate. The dielectric plate may define a first annular channel in the first surface of the dielectric plate, and the first annular channel may extend about the plurality of apertures. The dielectric plate may define a second annular channel in the first surface of the dielectric plate. The second annular channel may be formed radially outward from the first annular channel. The showerheads may also include a conductive material embedded within the dielectric plate and extending about the plurality of apertures without being exposed by the apertures. The conductive material may be exposed at the second annular channel.
Abstract:
A semiconductor processing chamber may include a remote plasma region, and a processing region fluidly coupled with the remote plasma region. The processing region may be configured to house a substrate on a support pedestal. The support pedestal may include a first material at an interior region of the pedestal. The support pedestal may also include an annular member coupled with a distal portion of the pedestal or at an exterior region of the pedestal. The annular member may include a second material different from the first material.
Abstract:
A ground shield of a processing chamber includes a ceramic body including a ground shield plate, a raised edge extending from an upper surface of the ground shield plate, and a hollow shaft that extends from a lower surface of the ground shield plate. An electrically conductive layer is formed on and conforms to at least the upper surface of the ground shield plate and an interior surface of the hollow shaft. A first protective layer is formed on at least the electrically conductive layer. A heater plate of a heater first within the raised edge and on the ground shield plate such that the heater plate is disposed on top of the first protective layer, the electrically conductive layer, and the upper surface of the ground shield plate.
Abstract:
A wafer chuck assembly includes a puck, a shaft and a base. The puck includes an electrically insulating material that defines a top surface of the puck; a plurality of electrodes are embedded within the electrically insulating material. The puck also includes an inner puck element that forms one or more channels for a heat exchange fluid, the inner puck element being in thermal communication with the electrically insulating material, and an electrically conductive plate disposed proximate to the inner puck element. The shaft includes an electrically conductive shaft housing that is electrically coupled with the plate, and a plurality of connectors, including electrical connectors for the electrodes. The base includes an electrically conductive base housing that is electrically coupled with the shaft housing, and an electrically insulating terminal block disposed within the base housing, the plurality of connectors passing through the terminal block.
Abstract:
Methods and apparatus provide plasma generation for semiconductor process chambers. In some embodiments, the plasma is generated by a system that may comprise a process chamber having at least two upper microwave cavities separated from a lower microwave cavity by a metallic plate with a plurality of radiation slots, at least one microwave input port connected to a first one of the at least two upper microwave cavities, at least two microwave input ports connected to a second one of the at least two upper microwave cavities, and the lower microwave cavity receives radiation through the plurality of radiation slots in the metallic plate from both of the at least two upper microwave cavities, the lower microwave cavity is configured to form an electric field that provides uniform plasma distribution in a process volume of the process chamber.
Abstract:
A semiconductor processing chamber may include a remote plasma region, and a processing region fluidly coupled with the remote plasma region. The processing region may be configured to house a substrate on a support pedestal. The support pedestal may include a first material at an interior region of the pedestal. The support pedestal may also include an annular member coupled with a distal portion of the pedestal or at an exterior region of the pedestal. The annular member may include a second material different from the first material.