Abstract:
A quadrupole ion trap includes a switch 3 for switching a trapping voltage between discrete voltage levels VH, VL. This creates a digital trapping field for trapping precursor ions and product ions in a trapping region of the ion trap. A gating voltage is applied to a gate electrode 12 to control injection of source electrons into the ion trap. Application of the gating voltage is synchronised with the switching so that electrons are injected into the trapping region while the trapping voltage is at a selected one of the voltage levels and can reach the trapping region with a kinetic energy suitable for electron capture dissociation to take place.
Abstract translation:四极离子阱包括用于在离散电压V H,V L L之间切换捕获电压的开关3。 这产生了用于在离子阱的捕获区捕获前体离子和产物离子的数字捕获场。 施加门极电压到栅电极12以控制将源电子注入到离子阱中。 门控电压的施加与开关同步,使得电子注入捕获区域,同时捕获电压处于选定的一个电压电平并且可以以适合于电子捕获解离的动能达到捕获区域发生 。
Abstract:
A method for modifying the refractive index of an optical, polymeric material. The method comprises irradiating select regions of the optical, polymeric material with a focused, visible or near-IR laser having a pulse energy from 0.05 nJ to 1000 nJ. The irradiation results in the formation of refractive optical structures, which exhibit little or no scattering loss. The method can be used to modify the refractive index of an intraocular lens following the surgical implantation of the intraocular lens in a human eye. The invention is also directed to an optical device comprising refractive optical structures, which exhibit little or no scattering loss and are characterized by a positive change in refractive index.
Abstract:
A quadrupole ion trap device has a field adjusting electrode located outside the trapping region adjacent the aperture in the entrance end cap electrode, and optionally adjacent the aperture in the exit end cap electrode. The field adjusting electrode(s) controls field distortion in the vicinity of the apertures. By appropriately setting the voltages on the field adjusting electrodes the efficiency and resolution of operational processes such as ion introduction, precursor ion isolation and mass scanning can be improved.
Abstract:
A digital drive apparatus (FIG. 3) for quadrupole device such as a quadrupole ion trap has a digital signal generator (11, 13, 14; 24, 25, 26) and a switching arrangement (16, 17) which alternately switches between high and low voltage levels (V1, V2) to generate a rectangular wave drive voltage. A dipole excitation voltage is also supplied to the quadrupole device to excite resonant oscillatory motion of ions.
Abstract:
Various embodiments of the invention provide human proteins associated with cell growth, differentiation, and death (CGDD) and polynucleotides which identify and encode CGDD. Embodiments of the invention also provide expression vectors, host cells, antibodies, agonists, and antagonists. Other embodiments provide methods for diagnosing, treating, or preventing disorders associated with aberrant expression of CGDD.
Abstract:
The invention provides human human kinases (PKIN) and polynucleotides which identify and encode PKIN. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of PKIN.
Abstract:
An equivalent waveform for a distorted waveform used in timing and signal integrity analysis in the design of an integrated circuit is automatically generated. The equivalent waveform is produced by calculating the transition quantity of a first non-distorted waveform. The transition quantity is the amount of transition of the first non-distorted waveform that is required for the cell to produce an output waveform with a predetermined end voltage. The end point of the transition period for the distorted waveform is then determined based on when the distorted waveform has accumulated the same transition quantity. The equivalent waveform can then be formed by computing a second non-distorted waveform such that the end point of the transition period for the second non-distorted waveform coincides with the end point of the transition period for the distorted waveform.
Abstract:
The invention provides human transporters and ion channels (TRICH) and polynucleotides which identify and encode TRICH. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of TRICH.
Abstract:
The invention provides human secreted proteins (SECP) and polynucleotides which identify and encode SECP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of SECP.
Abstract:
A method for ejecting ions from a quadrupole ion trap includes creating a digital control signal, using the digital control signal to control the timing of a switch unit to generate a time-varying rectangular wave voltage, supplying the rectangular wave voltage to the ion trap to trap ions in a predetermined range of mass-to-charge ratio, and varying the duty cycle of every nth wave of the rectangular wave voltage (where n is an integer greater than 1) to cause ejection of ions having a predetermined mass-to-charge ratio. The method can be used for analysis of mass-to-charge ratio by adjusting the frequency of the rectangular wave voltage to select a starting point for scanning mass-to-charge ratio, and then varying the frequency while the duty cycle is being varied to cause ejection of trapped ions, in sequence, according to mass-to-charge ratio.