Abstract:
One illustrative method disclosed herein includes, among other things, forming a plurality of fins in a semiconducting substrate, each of which has a corresponding masking layer feature positioned thereabove, forming a masking layer that has an opening that exposes at least two fins of the plurality of fins, performing an angled etching process through the opening in the masking layer so as to remove the masking layer feature formed above one of the at least two exposed fins, and thereby define an exposed fin, while leaving the masking layer feature intact above the other of the at least two exposed fins, and performing an anisotropic etching process through the opening in the masking layer to remove the exposed fin while leaving the other of the at least two exposed fins intact.
Abstract:
Methods of fabricating one or more semiconductor fin structures are provided which include: providing a substrate structure including a first semiconductor material; providing a fin stack(s) above the substrate structure, the fin stack(s) including at least one semiconductor layer, which includes a second semiconductor material; depositing a conformal protective film over the fin stack(s) and the substrate structure; and etching the substrate structure using, at least in part, the fin stack(s) as a mask to facilitate defining the one or more semiconductor fin structures. The conformal protective film protects sidewalls of the at least one semiconductor layer of the fin stack(s) from etching during etching of the substrate structure. As one example, the first semiconductor material may be or include silicon, the second semiconductor material may be or include silicon germanium, and the conformal protective film may be, in one example, silicon nitride.
Abstract:
One method of forming replacement gate structures for first and second devices, the first device being a short channel device and the second device being a long channel device, is disclosed which includes forming a first and a second gate cavity above a semiconductor substrate, the first gate cavity being narrower than the second gate cavity, forming a bulk metal layer within the first and second gate cavities, performing an etching process to recess the bulk metal layer within the first and second gate cavities, resulting in the bulk metal layer within the second gate cavity being at its final thickness, forming a masking layer over the bulk metal layer within the second gate cavity, and performing an etching process to further recess the bulk metal layer within the first gate cavity, resulting in the bulk metal layer within the first gate cavity being at its final thickness.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, a method for fabricating integrated circuits includes providing a sacrificial gate structure over a semiconductor substrate. The sacrificial gate structure includes two spacers and sacrificial gate material between the two spacers. The method recesses a portion of the sacrificial gate material between the two spacers. Upper regions of the two spacers are etched while using the sacrificial gate material as a mask. The method includes removing a remaining portion of the sacrificial gate material and exposing lower regions of the two spacers. A first metal is deposited between the lower regions of the two spacers. A second metal is deposited between the upper regions of the two spacers.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to contact structures and methods of manufacture. The structure includes: a plurality of gate structures comprising source and drain regions and sidewall spacers; contacts connecting to at least one gate structure of the plurality of gate structures; and at least one metallization feature connecting to the source and drain regions and extending over the sidewall spacers.
Abstract:
A device including a self-aligned buried contact between spacer liners and isolated from a pull down (PD)/pull-up (PU) shared gate and an n-channel field-effect transistor (NFET) pass gate (PG) gate and method of production thereof. Embodiments include first and second high-k/metal gate (HKMG) structures over a first portion of a substrate, and a third HKMG structure over a second portion of the substrate; an inter-layer dielectric (ILD) over a portion of the substrate and on sidewalls of the first, second and third HKMG structures; a spacer liner on sidewalls of the ILD between the second and third HKMG structures; and a buried contact layer between the spacer liner and in a portion of the substrate.
Abstract:
A device is disclosed that includes an active layer, a gate structure positioned above a channel region of the active layer and a first sidewall spacer positioned adjacent the gate structure. The device also includes a gate cap layer positioned above the gate structure and an upper spacer that contacts sidewall surfaces of the gate cap layer, a portion of an upper surface of the gate structure and an inner surface of the first sidewall spacer.
Abstract:
We report a semiconductor device, containing a semiconductor substrate; an isolation feature on the substrate; a plurality of gates on the isolation feature, wherein each gate comprises a gate electrode and a high-k dielectric layer disposed between the gate electrode and the isolation feature and disposed on and in contact with at least one side of the gate electrode; and a fill metal between the plurality of gates on the isolation feature. We also report methods of forming such a device, and a system for manufacturing such a device.
Abstract:
A method of fabricating an interconnect structure of a semiconductor device is provided having a first conductive line and forming a second conductive line over the first conductive line. A via opening is formed in the second conductive line, and the via opening is aligned over the first conductive line. The via opening is filled with a conductive material to form an interconnect via and an upper portion of the interconnect via forms a portion of the second conductive line.
Abstract:
Processes form integrated circuit apparatuses that include parallel fins, wherein the fins are patterned in a first direction. Parallel gate structures intersect the fins in a second direction perpendicular to the first direction, wherein the gate structures have a lower portion adjacent to the fins and an upper portion distal to the fins. Source/drain structures are positioned on the fins between the gate structures. Source/drain contacts are positioned on the source/drain structures and multiple insulator layers are positioned between the gate structures and the source/drain contacts. Additional upper sidewall spacers are positioned between the upper portion of the gate structures and the multiple insulator layers.