摘要:
Optimal strain in the channel region of a PMOS transistor is provided by silicon alloy material in the junction regions of the device in a non-planar relationship with the surface of the substrate. The silicon alloy material, the dimensions of the silicon alloy material, as well as the non-planar relationship of the silicon alloy material with the surface of the substrate are selected so that the difference between the lattice spacing of the silicon alloy material and of the substrate causes strains in the silicon alloy material below the substrate surface, as well as above the substrate surface, to affect an optimal silicon alloy induced strain in the substrate channel. In addition, the non-planar relationship may be selected so that any strains caused by different lattice spaced layers formed over the silicon alloy material have a reduced effect on the strain in the channel region.
摘要:
Known techniques to improve metal-oxide-semiconductor field effect transistor (MOSFET) performance is to add a high stress dielectric layer to the MOSFET. The high stress dielectric layer introduces stress in the MOSFET that causes electron mobility drive current to increase. This technique increases process complexity, however, and can degrade PMOS performance. Embodiments of the present invention create dislocation loops in the MOSFET substrate to introduce stress and implants nitrogen in the substrate to control the growth of the dislocation loops so that the stress remains beneath the channel of the MOSFET.
摘要:
The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with recessed thin inner spacers and recessed thin outer spacers.
摘要:
A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with recessed thin inner spacers and recessed thin outer spacers.
摘要:
A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with recessed thin inner spacers and recessed thin outer spacers.
摘要:
A method and device for improved salicide resistance in polysilicon gates under 0.20 &mgr;m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with thin inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack with recessed thin inner spacers and recessed thin outer spacers.
摘要:
A method and an apparatus for forming a transistor suitable for a high voltage circuit. In one embodiment, the transistor is formed without adding any steps to an existing state-of-the-art CMOS process. A well is implanted into a portion of a substrate such that the well has a higher doping concentration than the substrate. A first diffusion region is then implanted into the substrate such that at least a portion of the first diffusion is disposed within the well. In addition, a second diffusion is implanted into the substrate separated from the well such that the second diffusion region is disposed entirely outside the well. A channel region is disposed between the first and second regions and gate is disposed over the channel region to form the high voltage transistor. Since the second diffusion region is disposed entirely outside the well in the lower doped substrate, a higher junction breakdown voltage is realized. Furthermore, with the transistor layout described herein having at least a portion of the first diffusion region disposed within the well, adequate device isolation is also realized.
摘要:
Integrated circuit structures having differentiated interconnect lines in a same dielectric layer, and methods of fabricating integrated circuit structures having differentiated interconnect lines in a same dielectric layer, are described. In an example, an integrated circuit structure includes an inter-layer dielectric (ILD) layer above a substrate. A plurality of conductive interconnect lines is in the ILD layer. The plurality of conductive interconnect lines includes a first interconnect line having a first height, and a second interconnect line immediately laterally adjacent to but spaced apart from the first interconnect line, the second interconnect line having a second height less than the first height.
摘要:
Gate-all-around integrated circuit structures having adjacent island structures are described. For example, an integrated circuit structure includes a semiconductor island on a semiconductor substrate. A first vertical arrangement of horizontal nanowires is above a first fin protruding from the semiconductor substrate. A channel region of the first vertical arrangement of horizontal nanowires is electrically isolated from the fin. A second vertical arrangement of horizontal nanowires is above a second fin protruding from the semiconductor substrate. A channel region of the second vertical arrangement of horizontal nanowires is electrically isolated from the second fin. The semiconductor island is between the first vertical arrangement of horizontal nanowires and the second vertical arrangement of horizontal nanowires.
摘要:
Described herein are IC devices that include semiconductor nanoribbons stacked over one another to realize high-density three-dimensional (3D) dynamic random-access memory (DRAM). An example device includes a first semiconductor nanoribbon, a second semiconductor nanoribbon, a first source or drain (S/D) region and a second S/D region in each of the first and second nanoribbons, a first gate stack at least partially surrounding a portion of the first nanoribbon between the first and second S/D regions in the first nanoribbon, and a second gate stack, not electrically coupled to the first gate stack, at least partially surrounding a portion of the second nanoribbon between the first and second S/D regions in the second nanoribbon. The device further includes a bitline coupled to the first S/D regions of both the first and second nanoribbons.