摘要:
A semiconductor device free from electric failure in transistors at upper trench edges can be produced by a simplified process comprising basic steps of forming a pad oxide film on the circuit-forming side of a semiconductor substrate; forming an oxidation prevention film on the pad oxide film; removing the oxidation presention film and the pad oxide film at a desired position, thereby exposing the surface of the semiconductor substrate; horizontally recessing the pad oxide film, etching the exposed surface of the semiconductor substrate by isotropic etching; forming a trench to a desired depth, using the oxidation prevention film as a mask; horizontally recessing the pad oxide film; oxidizing the trench formed in the semiconductor substrate; embedding an embedding isolation film in the oxidized trench; removing the embedding isolation film formed on the oxidation prevention film; removing the oxidation prevention film formed on the circuit-forming side of the semiconductor substrate; and removing the pad oxide film formed on the circuit-forming side of the semiconductor substrate, where round upper trench edges with a curvature can be obtained, if necessary, by conducting isotropic etching of exposed surface of the semiconductor substrate and horizontally recessing of the pad oxide film before the oxidation of the trench, whereby only one oxidation step is required.
摘要:
Grooves are defined in a substrate having device isolation regions by dry etching using silicon nitride films and side wall spacers as masks. Thereafter, the side wall spacers lying on side walls of the silicon nitride films are removed and the substrate is subjected to thermal oxidation, whereby the surface of the substrate at a peripheral portion of each active region is subjected to so-called round processing so as to have a sectional shape having a convex rounded shape.
摘要:
A semiconductor device and process of forming the device are described. The process includes forming a pad oxide film on the circuit-forming side of a semiconductor substrate; forming an oxidation prevention film on the pad oxide film; removing the oxidation prevention film and the pad oxide film at a desired position, thereby exposing the surface of the semiconductor substrate; horizontally recessing the pad oxide film; etching the exposed surface of the semiconductor substrate by isotropic etching; forming a trench to a desired depth, using the oxidation prevention film as a mask; horizontally recessing the pad oxide film; and oxidizing the trench formed in the semiconductor substrate. The produced device has round upper trench edges obtained by conducting isotropic etching of the exposed surface of the semiconductor substrate and horizontally recessing of the pad oxide film before the oxidation of the trench, whereby only one oxidation step is required.
摘要:
A semiconductor device having a highly reliable groove isolation structure with a desired radius of curvature formed at the groove upper edge and without formation of any step, there is produced by reducing the stress generation around the groove upper edge of an element isolation groove on a semiconductor substrate, thereby optimizing the shape of an element isolation groove and making the device finer and improving the device electric characteristics.
摘要:
An operational margin of a memory of a semiconductor integrated circuit device including an SRAM is improved. In order to set the Vth of driving MISFETs Qd, transfer MISFETs Qt and MISFETs for load resistance QL forming memory cells of an SRAM, relatively and intentionally higher than the Vth of predetermined MISFETs of SRAM peripheral circuits and logic circuits such as microprocessor, an impurity introduction step is introduced to set the Vth of the driving MISFETs Qd, transfer MISFETs Qt and MISFETs for load resistance, separately from an impurity introduction step for setting the Vth of the predetermined MISFETs.
摘要:
An operational margin of a memory of a semiconductor integrated circuit device including an SRAM is improved. In order to set the Vth of driving MISFETs Qd, transfer MISFETs Qt and MISFETs for load resistance QL forming memory cells of an SRAM, relatively and intentionally higher than the Vth of predetermined MISFETs of SRAM peripheral circuits and logic circuits, such as a microprocessor, an impurity introduction step is introduced to set the Vth of the driving MISFETs Qd, transfer MISFETs Qt and MISFETs for load resistance, separately from an impurity introduction step for setting the Vth of the predetermined MISFETs.
摘要:
A method for manufacturing a semiconductor device includes the steps of (1) forming a pad oxide film of 5 nm or more on a circuit forming surface of a semiconductor substrate; (2) forming an oxidation inhibition film on the pad oxide film; (3) forming grooves of a given depth with the oxidation inhibition film as a mask; (4) receding the pad oxide film; (5) oxidizing the grooves formed on the semiconductor substrate in the range of 0
摘要:
A method for manufacturing a semiconductor device includes the steps of (1) forming a pad oxide film of 5 nm or more on a circuit forming surface of a semiconductor substrate; (2) forming an oxidation inhibition film on the pad oxide film; (3) forming grooves of a given depth with the oxidation inhibition film as a mask; (4) receding the pad oxide film; (5) oxidizing the grooves formed on the semiconductor substrate in the range of 0
摘要:
A semiconductor device containing a polycrystalline silicon thin film wherein crystal grains of the silicon thin film have mainly a columnar structure and a crystal orientation of individual crystal grains is almost in a uniform direction can be produced by depositing a non-impurity-doped silicon thin film or an impurity layer on an interface of underlying film, followed by deposition of impurity-doped silicon thin film, if necessary, followed by heat treatment for polycrystallization.
摘要:
In depositing a silicon oxide film which constitutes part of a final passivation film onto a bonding pad formed on an interlayer insulating film, the silicon oxide depositing step is divided in two stages, and after the first deposition, the bonding pad is once exposed by etching, then the second deposition is performed, whereby the silicon oxide film which has thus been deposited in two stages is formed over a fuse element formed under the interlayer insulating film, while on the bonding pad is formed only the silicon oxide film deposited in the second stage. As a result, at the time of etching polyimide resin, silicon nitride film and silicon oxide film successively to expose the bonding pad, there remains a sufficient thickness of insulating film between the bottom of an aperture which is formed at the same time and the fuse element. Thereafter, an electrical test is conducted while applying a probe to the bonding pad and, where required, the fuse element located under the aperture is cut.