Abstract:
Disclosed are methods and engineered microorganisms that enhance or improve the production of crotyl alcohol. The engineered microorganisms include genetic modifications in alcohol dehydrogenase, alkene reductase or both enzymatic activities. By such genetic modifications, a crotyl alcohol production pathway is provided or improved.
Abstract:
Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 1,4-butanediol (BDO). Also provided herein are methods for using such an organism to produce BDO.
Abstract:
The invention provides non-naturally occurring microbial organisms having a toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene pathway. The invention additionally provides methods of using such organisms to produce toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene.
Abstract:
The invention provides a non-naturally occurring microbial organism having a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The invention additionally provides a method for producing 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid. The method can include culturing a 6-aminocaproic acid, caprolactam or hexametheylenediamine producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid.
Abstract:
The invention provides a non-naturally occurring microbial organism having an adipate, 6-aminocaproic acid or caprolactam pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective adipate, 6-aminocaproic acid or caprolactam pathway. The invention additionally provides a method for producing adipate, 6-aminocaproic acid or caprolactam. The method can include culturing an adipate, 6-aminocaproic acid or caprolactam producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an adipate, 6-aminocaproic acid or caprolactam pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce adipate, 6-aminocaproic acid or caprolactam.
Abstract:
The invention provides non-naturally occurring microbial organisms having a butadiene pathway. The invention additionally provides methods of using such organisms to produce butadiene.
Abstract:
The invention provides non-naturally occurring microbial organisms having a butadiene or crotyl alcohol pathway. The invention additionally provides methods of using such organisms to produce butadiene or crotyl alcohol.
Abstract:
The invention provides a non-naturally occurring microbial organism having a methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in a methacrylic acid pathway. The invention additionally provides a method for producing methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate. The method can include culturing methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a methacrylic acid pathway enzyme in a sufficient amount to produce methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate, under conditions and for a sufficient period of time to produce methacrylic acid, methacrylate ester, 3-hydroxyisobutyrate and/or 2-hydroxyisobutyrate.
Abstract:
The present invention relates to a method for preparing an adipate ester or thioester. The invention further relates to a method for preparing adipic acid from said ester or thioester. Further the invention provides a number of methods for preparing an intermediate for said ester or thioester. Further the invention relates to a method for preparing 6-amino caproic acid (6-ACA), a method for preparing 5-formyl valeric acid (5-FVA), and a method for preparing caprolactam. Further, the invention relates to a host cell for use in a method according to the invention.
Abstract:
A non-naturally occurring microbial organism having an isopropanol pathway includes at least one exogenous nucleic acid encoding an isopropanol pathway enzyme. The pathway includes an enzyme selected from a 4-hydroxybutyryl-CoA dehydratase, a crotonase, a 3-hydroxybutyryl-CoA dehydrogenase, an acetoacetyl-CoA synthetase, an acetyl-CoA:acetoacetate-CoA transferase, an acetoacetyl-CoA hydrolase, an acetoacetate decarboxylase, and an acetone reductase. A non-naturally occurring microbial organism having an n-butanol pathway includes at least one exogenous nucleic acid encoding an n-butanol pathway enzyme. Other non-naturally occurring microbial organism have n-butanol or isobutanol pathways. The organisms are cultured to produce isopropanol, n-butanol, or isobutanol.