Abstract:
A structure and method of visualizing and evaluating areas of tooth contact between upper and lower teeth when the upper and lower arches of a mouth are in a closed or occluded condition. The method may include performing a plurality of readings of tooth contacts, by a pressure sensing device, during a period of time and determining sensing properties of the tooth contacts based on the plurality of readings, wherein the sensing properties include one or more of: sequence of a first tooth contact relative to at least a second tooth contact, and pressure magnitude of the first tooth contact.
Abstract:
A sensing device for measuring force and/or torque includes a top part with a top electrode structure, a bottom part with a bottom electrode structure, and a support structure. The support structure includes spring elements for supporting the top part on the bottom part with the top electrode structure parallel to and facing the bottom electrode structure. The spring elements provide a gap between the top and bottom electrode structures and allow displacement of the top part relative to the bottom part in three orthogonal directions two parallel and one perpendicular to the bottom plate, and for rotation of the top part relative to the bottom part around three orthogonal axes, corresponding with the two parallel and one perpendicular directions. The displacement and/or rotation induce a change in distance between and/or overlap area of the top and bottom electrodes and a corresponding change of capacitance.
Abstract:
Sensors, sensing arrangements and devices, and related methods are provided. In accordance with an example embodiment, an impedance-based sensor includes a flexible dielectric material and generates an output based on pressure applied to the dielectric material and a resulting compression thereof. In certain embodiments, the dielectric material includes a plurality of regions separated by gaps and configured to elastically deform and recover in response to applied pressure.
Abstract:
A capacitive pressure sensing semiconductor device is provided, which has pressure resistance against pressure applied by a pressing member and can detect the pressure surely and efficiently. The pressure sensing semiconductor device includes a pressure detecting part, which detects pressure as a change in capacitance, and a package that receives the pressure detecting part within. The pressure detecting part includes a first electrode and a second electrode disposed to oppose the first electrode, with a determined distance therebetween. Capacitance is formed between the first electrode and the second electrode, and changes according to a change in said distance caused by pressure transmitted to the first electrode by a pressing member. The package also includes a pressure transmitting member that transmits, to the first electrode of the pressure detecting part, the pressure applied by the pressing member.
Abstract:
Sensors and methods of operating sensors are described herein. One sensor includes a number of III-nitride strain sensitive devices and a number of passive electrical components that connects each of them to one of the III-nitride strain sensitive devices.
Abstract:
A capacitive pressure sensing semiconductor device is provided, which has pressure resistance against pressure applied by a pressing member and can detect the pressure surely and efficiently. The pressure sensing semiconductor device includes a pressure detecting part, which detects pressure as a change in capacitance, and a package that receives the pressure detecting part within. The pressure detecting part includes a first electrode and a second electrode disposed to oppose the first electrode, with a determined distance therebetween. Capacitance is formed between the first electrode and the second electrode, and changes according to a change in said distance caused by pressure transmitted to the first electrode by a pressing member. The package also includes a pressure transmitting member that transmits, to the first electrode of the pressure detecting part, the pressure applied by the pressing member.
Abstract:
Provided is a technique for packaging a sensor structure having a contact sensing surface and a signal processing LSI that processes a sensor signal. The sensor structure has the contact sensing surface and sensor electrodes. The signal processing integrated circuit is embedded in a semiconductor substrate. The sensor structure and the semiconductor substrate are bonded by a bonding layer, forming a sensor device as a single chip. The sensor electrodes and the integrated circuit are sealed inside the sensor device, and the sensor electrodes and external terminals of the integrated circuit are led out to the back surface of the semiconductor substrate through a side surface of the semiconductor substrate.
Abstract:
Sensor cells are arranged in an array in an organic semiconductor layer. Row and column select circuitry addresses the cells of the array one cell at a time to determine the presence of an object, such as a fingerprint ridge or valley, contacting or proximate to a sensing surface above each cell. Control circuitry can be provided in a companion silicon chip or in a second layer of organic semiconductor material to communicate with the array and an associated system processor. The array of sensor cells can be fabricated using a flexible polymer substrate that is peeled off and disposed of after contacts have been patterned on the organic semiconductor layer. The organic semiconductor layer can be used with a superimposed reactive interface layer to detect specific chemical substances in a test medium.
Abstract:
A transistor structure includes a first terminal region, a second terminal region and a channel region therebetween in a semiconductor substrate. Additionally, the transistor structure includes a control electrode associated with the channel region, the control electrode having a control electrode portion which is elastically deflectable under the action of a force and spaced apart from the channel region. The distance between the control electrode portion and the channel region is changed based on the action of force.
Abstract:
The present invention relates to high sensitivity elastic deflection sensors, more particularly related to capacitively coupled FET based elastic deflection sensors. A sub-threshold elastic deflection FET sensor for sensing pressure/force comprises an elastic member forming a moving gate of the sensor, fixed dielectric on substrate of the FET, and a fluid dielectric between the elastic member and the fixed dielectric, wherein alteration in the height of the fluid dielectric (TSENS) due to pressure/force on the elastic member varies the sensor gate capacitance.