Abstract:
There is provided a multi layered printed circuit board. The multi layered printed circuit board according to an exemplary embodiment of the present disclosure includes: a plurality of circuit layers; insulating layers each formed between the plurality of circuit layers; and a via penetrating through the insulating layers and the circuit layers and electrically connecting the plurality of circuit layers to each other, wherein the via includes a first via and a second via, and the second via is a large diameter via having a diameter larger than that of the first via.
Abstract:
A multilayer substrate is provided with a conductor plane region in which a plurality of conductor planes are disposed; a clearance region disposed adjacent to the conductor plane region so that the plurality of conductor planes are excluded from the clearance region. A plurality of signal vias are disposed through the clearance region so that the plurality of signal vias are isolated from the plurality of conductor planes. A conductor post is connected to one of the plurality of conductor planes and disposed between two of the signal vias in the clearance region.
Abstract:
A multi-layer substrate includes a planar transmission line structure and a signal via, which are connected by a multi-tier transition. The multi-tier transition includes a signal via pad configured to serve for a full-value connection of the signal via and the planar transmission line; and a dummy pad connected to the signal via, formed in an area of a clearance hole in a conductor layer disposed between a signal terminal of the signal via and the planar transmission line, and isolated from the conductor layer.
Abstract:
A multilayer printed circuit board, including: a signal interconnection which transmits and receives an electrical signal between electronic components; a ground interconnection connected to a ground of a circuit; a power interconnection connected to a power layer to supply power to electronic components; at least one ground layer installed in an inner layer; at least one clearance which passes through the ground layer; and a ground via which connects the ground interconnection with the ground layer. The signal interconnection and the ground interconnection or the signal interconnection and the power interconnection are installed in a pair, and a pair of interconnection vias for interlayer connection are inserted through the clearance installed in the ground layer so that one of the pair of interconnection vias is connected to the ground layer by the ground interconnection.
Abstract:
A printed circuit board can support different connectors by selectively setting connection components on the printed circuit board without changing wiring of transmission lines or making new vias in the printed circuit board.
Abstract:
A printed circuit board includes a first layout layer, a second layout layer, a copper foil layer, a first via and a second via. The first layout layer has a first signal line and a second signal line, each of which has a curved first portion. The second layout layer has a third signal line and a fourth signal line, each of which also has a curved first portion. The curved first portions of the first signal line, the second signal line, the third signal line and the fourth signal line are coupled to the first via and the second via. In this case, the curved first portions of the first signal line, the second signal line, the third signal line and the fourth signal line cooperatively generate spiral inductance characteristic.
Abstract:
According to one embodiment, a broadband transition to joint a via structure and a planar transmission line in a multilayer substrate is formed as an intermediate connection between the signal via pad and the planar transmission line disposed at the same conductor layer. The transverse dimensions of the transition are equal to the via pad diameter at the one end and strip width at another end; the length of the transition can be equal to the characteristic dimensions of the clearance hole in the direction of the planar transmission line or defined as providing the minimal excess inductive reactance in time-domain according to numerical diagrams obtained by three-dimensional full-wave simulations.
Abstract:
According to one embodiment, a broadband transition to joint a via structure and a planar transmission line in a multilayer substrate is formed as an intermediate connection between the signal via pad and the planar transmission line disposed at the same conductor layer. The transverse dimensions of the transition are equal to the via pad diameter at the one end and strip width at another end; The length of the transition can be equal to the characteristic dimensions of the clearance hole in the direction of the planar transmission line or defined as providing the minimal excess inductive reactance in time-domain according to numerical diagrams obtained by three-dimensional full-wave simulations.
Abstract:
To provide more compact dimensions of a via structure formed by signal via pairs and ground vias in multilayer substrate. A multilayer substrate is provided such that the multilayer substrate comprising a high-isolated via cell wherein the high-isolated via cell comprises: two signal via pairs; a shield structure around two signal via pairs consisting of ground vias and ground strips connected to ground vias wherein the shield structure is formed symmetrically in respect to two via pairs to reduce the transformation between mixed modes and also leakage from two signal via pairs; a clearance hole separating signal via pairs from other conductive parts of the multilayer substrate and having predetermined dimensions to provide broadband operation of the high-isolated via cell; and the separating strip disposed symmetrically between said signal via pairs to provide crosstalk reduction between two signal via pairs and common mode decrease.
Abstract:
A printed circuit board (PCB) includes a differential pair having a first differential trace and a second differential trace, a first via having an upper cap and a lower cap, and a second via having an upper cap and a lower cap. The first differential trace includes a first segment and a second segment, the second differential trace includes a third segment and a fourth segment. The first and the third segments are electrically coupled to the upper caps of the first and the second vias respectively. The second and the fourth segments are electrically coupled to the lower caps of the first and the second vias respectively. The first and the third segments extend from corresponding upper caps in different directions, the second and the fourth segments extend from corresponding lower caps in different directions.