Abstract:
Ground springs for connector receptacles. The ground springs may protect circuitry in an electronic device from stray voltages when a connector insert is inserted into a connector receptacle housed in the electronic device. One example may have a contacting portion located such that when a connector insert is mated with the connector receptacle, the contacting portion of the ground spring electrically connects to a shield of the connector insert before a ground contact of the connector insert electrically connects to a signal contact on a tongue of the connector receptacle.
Abstract:
An electronic device such as a portable computer may be provided with a lower housing and an upper housing. The electronic device may include hinge structures which allow the upper housing to rotate about a rotational axis relative to the lower housing. The electronic device may include a ventilation port structure with intake openings that allow air to be drawn into the electronic device. The ventilation structure may also include exhaust openings that are used to expel air from the lower housing. When the electronic device is in an open position, it may be desirable for the ventilation structure to form more exhaust openings than when the electronic device is in a closed position. The ventilation structure may form lower exhaust openings when the electronic device is in the closed position and form upper and lower exhaust openings when the electronic device is in the open position.
Abstract:
The disclosed embodiments provide a component for a portable electronic device. The component includes a gasket containing a rigid portion disposed around a bottom of a heat pipe, wherein the rigid portion forms a duct between a fan and an exhaust vent of the electronic device. The gasket also includes a first flexible portion bonded to the rigid portion, wherein the first flexible portion comprises a flap that is open during assembly of the heat pipe in the electronic device and closed over the heat pipe and the rigid portion to seal the duct around the heat pipe after the assembly.
Abstract:
An electronic device may be provided with an organic light-emitting diode display with minimized border regions. The border regions may be minimized by providing the display with bent edge portions having neutral plane adjustment features that facilitate bending of the bent edge portions while minimizing damage to the bent edge portions. The neutral plane adjustment features may include a modified backfilm layer of the display in which portions of the backfilm layer are removed in a bend region. A display device may include a substrate, a display panel on the substrate having display pixels, and peripheral circuitry proximate the display panel and configured to drive the display pixels. A portion of the periphery of the substrate may be bent substantially orthogonal to the display panel to reduce an apparent surface area of the display device. The bent portion may include an electrode for communication with the peripheral circuitry.
Abstract:
Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.
Abstract:
Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.
Abstract:
An internal component and external interface arrangement for a cylindrical compact computing system is described that includes at least a structural heat sink having triangular shape disposed within a cylindrical volume defined by a cylindrical housing. A computing engine having a generally triangular shape is described having internal components that include a graphics processing unit (GPU) board, a central processing unit (CPU) board, an input/output (I/O) interface board, an interconnect board, and a power supply unit (PSU).
Abstract:
Embodiments described herein may take the form of an electromagnetic actuator that produces a haptic output during operation. Generally, an electromagnetic coil is wrapped around a central magnet array. A shaft passes through the central magnet array, such that the central array may move along the shaft when the proper force is applied. When a current passes through the electromagnetic coil, the coil generates a magnetic field. The coil is stationary with respect to a housing of the actuator, while the central magnet array may move along the shaft within the housing. Thus, excitation of the coil exerts a force on the central magnet array, which moves in response to that force. The direction of the current through the coil determines the direction of the magnetic field and thus the motion of the central magnet array.
Abstract:
A desktop computing system having at least a central core surrounded by housing having a shape that defines a volume in which the central core resides is described. The housing includes a first opening and a second opening axially displaced from the first opening. The first opening having a size and shape in accordance with an amount of airflow used as a heat transfer medium for cooling internal components, the second opening defined by a lip that engages a portion of the airflow in such a way that at least some of the heat transferred to the air flow from the internal components is passed to the housing.
Abstract:
This application relates to a low profile, small footprint cooling stack that does not extend substantially beyond a footprint of an integrated circuit to which it is affixed. The cooling stack utilizes a number of beam springs that supply a seating force to the integrated circuit by way of a metal slug. In some embodiments, a bottom surface of the metal slug can be contoured in accordance with a top surface of the integrated circuit and/or socket. In other embodiments a gap between peripheral portion of a bottom surface of the metal slug and an associated printed circuit board can be filled by a layer of foam to reduce auditory signals generated by the integrated circuit.