Abstract:
An object is to control composition and a defect of an oxide semiconductor, another object is to increase a field effect mobility of a thin film transistor and to obtain a sufficient on-off ratio with a reduced off current. A solution is to employ an oxide semiconductor whose composition is represented by InMO3(ZnO)m, where M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al, and m is preferably a non-integer number of greater than 0 and less than 1. The concentration of Zn is lower than the concentrations of In and M. The oxide semiconductor has an amorphous structure. Oxide and nitride layers can be provided to prevent pollution and degradation of the oxide semiconductor.
Abstract:
An object is to provide a deposition method in which a gallium oxide film is formed by a DC sputtering method. Another object is to provide a method for manufacturing a semiconductor device using a gallium oxide film as an insulating layer such as a gate insulating layer of a transistor. An insulating film is formed by a DC sputtering method or a pulsed DC sputtering method, using an oxide target including gallium oxide (also referred to as GaOX). The oxide target includes GaOX, and X is less than 1.5, preferably more than or equal to 0.01 and less than or equal to 0.5, further preferably more than or equal to 0.1 and less than or equal to 0.2. The oxide target has conductivity, and sputtering is performed in an oxygen gas atmosphere or a mixed atmosphere of an oxygen gas and a rare gas such as argon.
Abstract:
A light-emitting element is provided which has a light-emitting layer between a first electrode and a second electrode, where the light-emitting layer has a first layer and a second layer; the first layer contains a first organic compound and a third organic compound; the second layer contains a second organic compound and the third organic compound; the first layer is provided to be in contact with the second layer on the first electrode side; the first organic compound is an organic compound with an electron transporting property; the second organic compound is an organic compound with a hole transporting property; the third organic compound has an electron trapping property; and light emission from the third organic compound can be obtained when voltage is applied to the first electrode and the second electrode so that the potential of the first electrode is higher than that of the second electrode.
Abstract:
A thin film transistor including an oxide semiconductor with favorable electrical characteristics is provided. The thin film transistor includes a gate electrode provided over a substrate, a gate insulating film provided over the gate electrode, an oxide semiconductor film provided over the gate electrode and on the gate insulating film, a metal oxide film provided on the oxide semiconductor film, and a metal film provided on the metal oxide film. The oxide semiconductor film is in contact with the metal oxide film, and includes a region whose concentration of metal is higher than that of any other region in the oxide semiconductor film (a high metal concentration region). In the high metal concentration region, the metal contained in the oxide semiconductor film may be present as a crystal grain or a microcrystal.
Abstract:
It is an object to provide a manufacturing method of a structure of a thin film transistor including an oxide semiconductor film, in which threshold voltage at which a channel is formed is positive and as close to 0 V as possible. A protective insulating layer is formed to cover a thin film transistor including an oxide semiconductor layer that is dehydrated or dehydrogenated by first heat treatment, and second heat treatment at a temperature that is lower than that of the first heat treatment, in which the increase and decrease in temperature are repeated plural times, is performed, whereby a thin film transistor including an oxide semiconductor layer, in which threshold voltage at which a channel is formed is positive and as close to 0 V as possible without depending on the channel length, can be manufactured.
Abstract:
An oxide semiconductor layer in which “safe” traps exist exhibits two kinds of modes in photoresponse characteristics. By using the oxide semiconductor layer, a transistor in which light deterioration is suppressed to the minimum and the electric characteristics are stable can be achieved. The oxide semiconductor layer exhibiting two kinds of modes in photoresponse characteristics has a photoelectric current value of 1 pA to 10 nA inclusive. When the average time τ1 until which carriers are captured by the “safe” traps is large enough, there are two kinds of modes in photoresponse characteristics, that is, a region where the current value falls rapidly and a region where the current value falls gradually, in the result of a change in photoelectric current over time.
Abstract:
Techniques are provided for manufacturing a light-emitting device having high internal quantum efficiency, consuming less power, having high luminance, and having high reliability. The techniques include forming a conductive light-transmitting oxide layer comprising a conductive light-transmitting oxide material and silicon oxide, forming a barrier layer in which density of the silicon oxide is higher than that in the conductive light-transmitting oxide layer over the conductive light-transmitting oxide layer, forming an anode having the conductive light-transmitting oxide layer and the barrier layer, heating the anode under a vacuum atmosphere, forming an electroluminescent layer over the heated anode, and forming a cathode over the electroluminescent layer. According to the techniques, the barrier layer is formed between the electroluminescent layer and the conductive light-transmitting oxide layer.
Abstract:
An EL element having a novel structure is provided, which is suitable for AC drive. A light-emitting element of the invention is provided with material layers (material layers each having approximately symmetric I-V characteristics with respect to the zero point in a graph having the abscissa axis showing current values and the ordinate axis showing voltage values) between a first electrode and a layer including an organic compound and between the layer including the organic compound and a second electrode respectively. Specifically, each of the material layers is a composite layer including a metal oxide and an organic compound.
Abstract:
It is an object to manufacture a highly reliable display device using a thin film transistor having favorable electric characteristics and high reliability as a switching element. In a bottom gate thin film transistor including an amorphous oxide semiconductor, an oxide conductive layer having a crystal region is formed between an oxide semiconductor layer which has been dehydrated or dehydrogenated by heat treatment and each of a source electrode layer and a drain electrode layer which are formed using a metal material. Accordingly, contact resistance between the oxide semiconductor layer and each of the source electrode layer and the drain electrode layer can be reduced; thus, a thin film transistor having favorable electric characteristics and a highly reliable display device using the thin film transistor can be provided.
Abstract:
A semiconductor device which includes a thin film transistor having an oxide semiconductor layer and excellent electrical characteristics is provided. Further, a method for manufacturing a semiconductor device in which plural kinds of thin film transistors of different structures are formed over one substrate to form plural kinds of circuits and in which the number of steps is not greatly increased is provided. After a metal thin film is formed over an insulating surface, an oxide semiconductor layer is formed thereover. Then, oxidation treatment such as heat treatment is performed to oxidize the metal thin film partly or entirely. Further, structures of thin film transistors are different between a circuit in which emphasis is placed on the speed of operation, such as a logic circuit, and a matrix circuit.