Abstract:
A semiconductor device which includes an oxide semiconductor and has favorable electrical characteristics is provided. In the semiconductor device, an oxide semiconductor film and an insulating film are formed over a substrate. Side surfaces of the oxide semiconductor film are in contact with the insulating film. The oxide semiconductor film includes a channel formation region and regions containing a dopant between which the channel formation region is sandwiched. A gate insulating film is formed on and in contact with the oxide semiconductor film. A gate electrode with sidewall insulating films is formed over the gate insulating film. A source electrode and a drain electrode are formed in contact with the oxide semiconductor film and the insulating film.
Abstract:
When a transistor having bottom gate bottom contact structure is manufactured, for example, a conductive layer constituting a source and a drain has a three-layer structure and two-step etching is performed. In the first etching process, an etching method in which the etching rates for at least the second film and the third film are high is employed, and the first etching process is performed until at least the first film is exposed. In the second etching process, an etching method in which the etching rate for the first film is higher than that in the first etching process and the etching rate for a “layer provided below and in contact with the first film” is lower than that in the first etching process is employed. The side wall of the second film is slightly etched when a resist mask is removed after the second etching process.
Abstract:
A semiconductor device for miniaturization is provided. The semiconductor device includes a semiconductor layer; a first electrode and a second electrode that are on the semiconductor layer and apart from each other over the semiconductor layer; a gate electrode over the semiconductor layer; and a gate insulating layer between the semiconductor layer and the gate electrode. The first and second electrodes comprise first conductive layers and second conductive layers. In a region overlapping with the semiconductor layer, the second conductive layers are positioned between the first conductive layers, and side surfaces of the second conductive layers are in contact with side surfaces of the first conductive layers. The second conductive layers have smaller thicknesses than those of the first conductive layers, and the top surface levels of the second conductive layers are lower than those of the first conductive layers.
Abstract:
A miniaturized transistor is provided with high yield. Further, a semiconductor device which has high on-state characteristics and which is capable of high-speed response and high-speed operation is provided. In the semiconductor device, an oxide semiconductor layer, a gate insulating layer, a gate electrode layer, an insulating layer, a conductive film, and an interlayer insulating layer are stacked in this order. A source electrode layer and a drain electrode layer are formed in a self-aligned manner by cutting the conductive film so that the conductive film over the gate electrode layer and the conductive layer is removed and the conductive film is divided. An electrode layer which is in contact with the oxide semiconductor layer and overlaps with a region in contact with the source electrode layer and the drain electrode layer is provided.
Abstract:
Described is a method for manufacturing a semiconductor device. A mask is formed over an insulating film and the mask is reduced in size. An insulating film having a projection is formed using the mask reduced in size, and a transistor whose channel length is reduced is formed using the insulating film having a projection. Further, in manufacturing the transistor, a planarization process is performed on a surface of a gate insulating film which overlaps with a top surface of a fine projection. Thus, the transistor can operate at high speed and the reliability can be improved. In addition, the insulating film is processed into a shape having a projection, whereby a source electrode and a drain electrode can be formed in a self-aligned manner.
Abstract:
A first conductive film overlapping with an oxide semiconductor film is formed over a gate insulating film, a gate electrode is formed by selectively etching the first conductive film using a resist subjected to electron beam exposure, a first insulating film is formed over the gate insulating film and the gate electrode, removing a part of the first insulating film while the gate electrode is not exposed, an anti-reflective film is formed over the first insulating film, the anti-reflective film, the first insulating film and the gate insulating film are selectively etched using a resist subjected to electron beam exposure, and a source electrode in contact with one end of the oxide semiconductor film and one end of the first insulating film and a drain electrode in contact with the other end of the oxide semiconductor film and the other end of the first insulating film are formed.
Abstract:
A miniaturized transistor having excellent electrical characteristics is provided with high yield. Further, a semiconductor device including the transistor and having high performance and high reliability is manufactured with high productivity. In a semiconductor device including a transistor in which an oxide semiconductor film including a channel formation region and low-resistance regions between which the channel formation region is sandwiched, a gate insulating film, and a gate electrode layer whose top surface and side surface are covered with an insulating film including an aluminum oxide film are stacked, a source electrode layer and a drain electrode layer are in contact with part of the oxide semiconductor film and the top surface and a side surface of the insulating film including an aluminum oxide film.
Abstract:
To provide a semiconductor device with less variations, a first insulator is deposited; a stack of first and second oxides and a first conductor is formed over the first insulator; a second insulator is formed over the first insulator and the stack; an opening is formed in the second insulator; a top surface of the second oxide is exposed by removing a region of the first conductor, second and third conductors are formed over the second oxide, and then cleaning is performed; a first oxide film is deposited in contact with a side surface of the first oxide and top and side surfaces of the second oxide; heat treatment is performed on an interface between the second oxide and the first oxide film through the first oxide film; and the second insulator is exposed and a fourth conductor, a third insulator, and a third oxide are formed in the opening.
Abstract:
A display apparatus with high display quality is provided. The display apparatus includes a first light-emitting device, a second light-emitting device, a first insulating layer, and a second insulating layer. The first light-emitting device includes a first pixel electrode, a first light-emitting layer over the first pixel electrode, and a common electrode over the first light-emitting layer. The second light-emitting device includes a second pixel electrode, a second light-emitting layer over the second pixel electrode, and the common electrode over the second light-emitting layer. The first insulating layer covers a side surface and part of a top surface of the first light-emitting layer and a side surface and part of a top surface of the second light-emitting layer. The second insulating layer overlaps with the side surface and the part of the top surface of the first light-emitting layer and the side surface and the part of the top surface of the second light-emitting layer with the first insulating layer therebetween. The common electrode covers the second insulating layer. In a cross-sectional view, an end portion of the second insulating layer has a tapered shape with a taper angle less than 90°. The second insulating layer covers at least part of a side surface of the first insulating layer.
Abstract:
A display apparatus with high display quality is provided. The display apparatus includes a first light-emitting device including a first pixel electrode, a first layer, and a common electrode; a second light-emitting device including a second pixel electrode, a second layer, and the common electrode; a first coloring layer; a second coloring layer transmitting light with a color different from a color of light transmitted by the first coloring layer; a first insulating layer; and a second coloring layer. The first layer and the second layer each contain a first light-emitting material emitting blue light and a second light-emitting material emitting light with a longer wavelength than blue light and are separated from each other. The first insulating layer covers a side surface and part of a top surface of the first layer and a side surface and part of a top surface of the second layer. The second insulating layer overlaps with the side surface and the part of the top surface of the first layer and the side surface and the part of the top surface of the second layer with the first insulating layer therebetween. The common electrode covers the second insulating layer. In a cross-sectional view, an end portion of the second insulating layer has a tapered shape with a taper angle less than 90 degrees.