Abstract:
An object is to provide a method for manufacturing a highly reliable semiconductor device including thin film transistors which have stable electric characteristics and are formed using an oxide semiconductor. A method for manufacturing a semiconductor device includes the steps of: forming an oxide semiconductor film over a gate electrode with a gate insulating film interposed between the oxide semiconductor film and the gate electrode, over an insulating surface; forming a first conductive film including at least one of titanium, molybdenum, and tungsten, over the oxide semiconductor film; forming a second conductive film including a metal having lower electronegativity than hydrogen, over the first conductive film; forming a source electrode and a drain electrode by etching of the first conductive film and the second conductive film; and forming an insulating film in contact with the oxide semiconductor film, over the oxide semiconductor film, the source electrode, and the drain electrode.
Abstract:
An object is, in a thin film transistor including an oxide semiconductor layer, to reduce contact resistance between the oxide semiconductor layer and source and drain electrode layers electrically connected to the oxide semiconductor layer. The source and drain electrode layers have a stacked-layer structure of two or more layers in which a layer in contact with the oxide semiconductor layer is formed using a metal whose work function is lower than the work function of the oxide semiconductor layer or an alloy containing such a metal. Layers other than the layer in contact with the oxide semiconductor layer of the source and drain electrode layers are formed using an element selected from Al, Cr, Cu, Ta, Ti, Mo, or W, an alloy containing any of these elements as a component, an alloy containing any of these elements in combination, or the like.
Abstract:
A flexible display device with high viewability is provided. The display device includes a first substrate, a second substrate, a first element layer, and a second element layer. The first element layer is positioned between the first substrate and the second substrate. The second element layer is positioned between the first substrate and the second substrate. The first element layer and the second element layer overlap with each other in a region. The first substrate and the second substrate have flexibility. The first element layer includes a display element and a first circuit. The display element is electrically connected to the first circuit. The second element layer includes a sensor element. The sensor element has a function of sensing distortion.
Abstract:
A semiconductor device including an oxide conductor with high conductivity and high transmittance is provided. A manufacturing method for a semiconductor device includes the steps of: forming an oxide semiconductor over a first insulator; forming a second insulator over the first insulator and the oxide semiconductor; forming a first conductor over the second insulator; forming an etching mask over the first conductor; forming a second conductor including a region overlapping with the oxide semiconductor by etching the first conductor with use of the etching mask as a mask; removing the etching mask; and performing heat treatment after forming a hydrogen-containing layer over the second insulator and the second conductor.
Abstract:
An object is to improve field effect mobility of a thin film transistor using an oxide semiconductor. Another object is to suppress increase in off current even in a thin film transistor with improved field effect mobility. In a thin film transistor using an oxide semiconductor layer, by forming a semiconductor layer having higher electrical conductivity and a smaller thickness than the oxide semiconductor layer between the oxide semiconductor layer and a gate insulating layer, field effect mobility of the thin film transistor can be improved, and increase in off current can be suppressed.
Abstract:
To provide a method by which a semiconductor device including a thin film transistor with excellent electric characteristics and high reliability is manufactured with a small number of steps. After a channel protective layer is formed over an oxide semiconductor film containing In, Ga, and Zn, a film having n-type conductivity and a conductive film are formed, and a resist mask is formed over the conductive film. The conductive film, the film having n-type conductivity, and the oxide semiconductor film containing In, Ga, and Zn are etched using the channel protective layer and gate insulating films as etching stoppers with the resist mask, so that source and drain electrode layers, a buffer layer, and a semiconductor layer are formed.
Abstract:
With an increase in the definition of a display device, the number of pixels is increased, and thus the numbers of gate lines and signal lines are increased. The increase in the numbers of gate lines and signal lines makes it difficult to mount an IC chip having a driver circuit for driving the gate line and the signal line by bonding or the like, which causes an increase in manufacturing costs. A pixel portion and a driver circuit driving the pixel portion are provided over the same substrate. The pixel portion and at least a part of the driver circuit are formed using thin film transistors in each of which an oxide semiconductor is used. Both the pixel portion and the driver circuit are provided over the same substrate, whereby manufacturing costs are reduced.
Abstract:
A thin film transistor structure in which a source electrode and a drain electrode formed from a metal material are in direct contact with an oxide semiconductor film may lead to high contact resistance. One cause of high contact resistance is that a Schottky junction is formed at a contact plane between the source and drain electrodes and the oxide semiconductor film. An oxygen-deficient oxide semiconductor layer which includes crystal grains with a size of 1 nm to 10 nm and has a higher carrier concentration than the oxide semiconductor film serving as a channel formation region is provided between the oxide semiconductor film and the source and drain electrodes.
Abstract:
To provide an imaging device that is highly stable when exposed to radiation such as X-rays. The imaging device includes a substrate, a pixel circuit, and a scintillator which are stacked in order. The pixel circuit includes a light-receiving element and a circuit portion electrically connected to the light-receiving element. The substrate is provided with a heater. A transistor in the pixel circuit is heated by the passage of a current through the heater at times other than imaging, thus, degradation of the electrical characteristics of the transistor due to X-ray irradiation can be recovered.
Abstract:
An object is to improve field effect mobility of a thin film transistor using an oxide semiconductor. Another object is to suppress increase in off current even in a thin film transistor with improved field effect mobility. In a thin film transistor using an oxide semiconductor layer, by forming a semiconductor layer having higher electrical conductivity and a smaller thickness than the oxide semiconductor layer between the oxide semiconductor layer and a gate insulating layer, field effect mobility of the thin film transistor can be improved, and increase in off current can be suppressed.