Abstract:
An interlayer is used to reduce Fermi-level pinning phenomena in a semiconductive device with a semiconductive substrate. The interlayer may be a rare-earth oxide. The interlayer may be an ionic semiconductor. A metallic barrier film may be disposed between the interlayer and a metallic coupling. The interlayer may be a thermal-process combination of the metallic barrier film and the semiconductive substrate. A process of forming the interlayer may include grading the interlayer. A computing system includes the interlayer.
Abstract:
Techniques are disclosed for enabling multi-sided condensation of semiconductor fins. The techniques can be employed, for instance, in fabricating fin-based transistors. In one example case, a strain layer is provided on a bulk substrate. The strain layer is associated with a critical thickness that is dependent on a component of the strain layer, and the strain layer has a thickness lower than or equal to the critical thickness. A fin is formed in the substrate and strain layer, such that the fin includes a substrate portion and a strain layer portion. The fin is oxidized to condense the strain layer portion of the fin, so that a concentration of the component in the strain layer changes from a pre-condensation concentration to a higher post-condensation concentration, thereby causing the critical thickness to be exceeded.
Abstract:
Embodiments of the invention include nanowire and nanoribbon transistors and methods of forming such transistors. According to an embodiment, a method for forming a microelectronic device may include forming a multi-layer stack within a trench formed in a shallow trench isolation (STI) layer. The multi-layer stack may comprise at least a channel layer, a release layer formed below the channel layer, and a buffer layer formed below the channel layer. The STI layer may be recessed so that a top surface of the STI layer is below a top surface of the release layer. The exposed release layer from below the channel layer by selectively etching away the release layer relative to the channel layer.
Abstract:
Aspect ratio trapping (ART) approaches for fabricating vertical semiconductor devices and vertical semiconductor devices fabricated there from are described. For example, a semiconductor device includes a substrate with an uppermost surface having a first lattice constant. A first source/drain region is disposed on the uppermost surface of the substrate and has a second, different, lattice constant. A vertical channel region is disposed on the first source/drain region. A second source/drain region is disposed on the vertical channel region. A gate stack is disposed on and completely surrounds a portion of the vertical channel region.
Abstract:
Embodiments relate to an improved tri-gate device having gate metal fills, providing compressive or tensile stress upon at least a portion of the tri-gate transistor, thereby increasing the carrier mobility and operating frequency. Embodiments also contemplate method for use of the improved tri-gate device.
Abstract:
A single fin or a pair of co-integrated n- and p-type single crystal electronic device fins are epitaxially grown from a substrate surface at a bottom of one or a pair of trenches formed between shallow trench isolation (STI) regions. The fin or fins are patterned and the STI regions are etched to form a height of the fin or fins extending above etched top surfaces of the STI regions. The fin heights may be at least 1.5 times their width. The exposed sidewall surfaces and a top surface of each fin is epitaxially clad with one or more conformal epitaxial materials to form device layers on the fin. Prior to growing the fins, a blanket buffer epitaxial material may be grown from the substrate surface; and the fins grown in STI trenches formed above the blanket layer. Such formation of fins reduces defects from material interface lattice mismatches.
Abstract:
An apparatus including a semiconductor body including a channel region and junction regions disposed on opposite sides of the channel region, the semiconductor body including a first material including a first band gap; and a plurality of nanowires including a second material including a second band gap different than the first band gap, the plurality of nanowires disposed in separate planes extending through the first material so that the first material surrounds each of the plurality of nanowires; and a gate stack disposed on the channel region. A method including forming a plurality of nanowires in separate planes above a substrate, each of the plurality of nanowires including a material including a first band gap; individually forming a cladding material around each of the plurality of nanowires, the cladding material including a second band gap; coalescing the cladding material; and disposing a gate stack on the cladding material.
Abstract:
A first III-V material based buffer layer is deposited on a silicon substrate. A second III-V material based buffer layer is deposited onto the first III-V material based buffer layer. A III-V material based device channel layer is deposited on the second III-V material based buffer layer.