Abstract:
The present invention relates to a method for decomposing and recovering an isocyanate compound, which comprises: continuously mixing and dispersing into water at high pressure and high temperature an isocyanate compound having at least one isocyanate group or group derived from an isocyanate group in a molten state or solution state, supplying a liquid mixture containing the isocyanate compound and the water at high pressure and high temperature continuously to a reactor, followed by subjecting the isocyanate compound to a decomposition reaction in the reactor, and recovering a raw material for the isocyanate compound or a derivative thereof; and an apparatus for decomposing and recovering an isocyanate compound, which comprises: a reactor which brings water at high pressure and high temperature into contact with an isocyanate compound having at least one isocyanate group or group derived from an isocyanate group to cause a decomposition reaction, a water supply line which continuously supplies the water at high pressure and high temperature to a reactor, a compound supply line which continuously supplies the isocyanate compound in a molten state or solution state to the water supply line, an on-off valve which communicates the compound supply line with a vicinity of a communication portion of the water supply line to the reactor, a dehydrating device which conducts a dehydration of a decomposition reaction product discharged from the reactor, and a purification device which purifies the decomposition reaction product after the dehydration.
Abstract:
A vertical high temperature and high pressure stove structure includes a vertically-disposed pressure vessel and a heating module disposed in the pressure vessel. The heating module includes a heating space filled with a quartz tube and sets of independent heating units. The independent heating units includes a lower protective zone heating unit, a provision zone heating unit, a synthesis zone heating unit and an upper protective zone heating unit. The synthesis zone heating unit provides a group III element fusion zone with a temperature equal to or greater than that of a composition melting point, the provision zone heating unit provides a steam having temperature greater than evaporation temperature to a group V element provision zone, and a compound synthesis of a group III element and a group V element as chemical element periodic table is rapidly completed in the group III element fusion zone.
Abstract:
A high pressure apparatus and related methods for processing supercritical fluids. In a specific embodiment, the present apparatus includes a capsule, a heater, at least one ceramic ring but can be multiple rings, optionally, with one or more scribe marks and/or cracks present. In a specific embodiment, the apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. In a specific embodiment, the apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively.
Abstract:
Methods and systems relate to temperature control of autoclave reactor based reactions. The systems include an autoclave reactor vessel and a heater disposed external to the vessel with the heater and the vessel movable relative to one another using an actuator device. Operating the actuator device displaces the heater further from the vessel when desired to cool the reactor vessel, such as when quenching the reactions.
Abstract:
The present invention relates to a method for decomposing and recovering an isocyanate compound, which comprises: continuously mixing and dispersing into water at high pressure and high temperature an isocyanate compound having at least one isocyanate group or group derived from an isocyanate group in a molten state or solution state, supplying a liquid mixture containing the isocyanate compound and the water at high pressure and high temperature continuously to a reactor, followed by subjecting the isocyanate compound to a decomposition reaction in the reactor, and recovering a raw material for the isocyanate compound or a derivative thereof; and an apparatus for decomposing and recovering an isocyanate compound, which comprises: a reactor which brings water at high pressure and high temperature into contact with an isocyanate compound having at least one isocyanate group or group derived from an isocyanate group to cause a decomposition reaction, a water supply line which continuously supplies the water at high pressure and high temperature to a reactor, a compound supply line which continuously supplies the isocyanate compound in a molten state or solution state to the water supply line, an on-off valve which communicates the compound supply line with a vicinity of a communication portion of the water supply line to the reactor, a dehydrating device which conducts a dehydration of a decomposition reaction product discharged from the reactor, and a purification device which purifies the decomposition reaction product after the dehydration.
Abstract:
The invention provides an apparatus and a process for the high pressure polymerization of ethylene, optionally with one or more comonomers, in which unreacted monomer is separated from the polymer in a separation system having at least first, second and third separation vessels and in which off gas from the second vessel is recombined back into the product mixture upstream of the first separation vessel, preferably using a jet pump.
Abstract:
A subsurface thermally autogenous reactor and method has downgoing and upgoing flow passages connected at the bottom to form a U-tube and in heat exchange relation to each other. The downgoing and upgoing flow passages each have an upper heat exchange section and a lower reaction section. An air injection system injects air into the downgoing flow passage between the heat exchange and reaction sections. The cross sectional area of the upgoing heat exchange section is greater than the cross sectional area of the downgoing heat exchange section to balance the downgoing and upgoing flow velocities. The downgoing heat exchange section has multiple tubes to increase the heat transfer area.
Abstract:
Disclosed herein is a method comprising combusting a feed stream to form combustion products; and reforming the combustion products to produce a gaseous composition comprising hydrogen. Disclosed herein too is a method for producing hydrogen comprising introducing a feed stream comprising natural gas and air or oxygen into a cyclical compression chamber; compressing the feed stream in the cyclical compression chamber; combusting the feed stream in the cyclical compression chamber to produce combustion products; discharging the combustion products from the cyclical compression chamber into a reforming section; and reforming the combustion products with steam in the reforming section to produce a gaseous composition comprising hydrogen.
Abstract:
A gravity pressure vessel (GPV) for processing a fluid stream containing organic materials provides several improvements to the art. In one embodiment, a GPV of the present invention sustains the heat energy requirements of a hydrolysis GPV by including therein, a first reaction chamber for conducting an exothermic reaction, and subsequently providing a second reaction chamber for hydrolysis of certain organic materials refractory to the exothermic reaction. Another embodiment provides for the perpetual cleaning of the heat transfer surfaces of the GPV. Still another embodiment provides for selective alteration of a hydrolysis reaction within a GPV independent of the flow of the fluid stream through the GPV.
Abstract:
Disclosed herein is a method comprising combusting a feed stream to form combustion products; and reforming the combustion products to produce a gaseous composition comprising hydrogen. Disclosed herein too is a method for producing hydrogen comprising introducing a feed stream comprising natural gas and air or oxygen into a cyclical compression chamber; compressing the feed stream in the cyclical compression chamber; combusting the feed stream in the cyclical compression chamber to produce combustion products; discharging the combustion products from the cyclical compression chamber into a reforming section; and reforming the combustion products with steam in the reforming section to produce a gaseous composition comprising hydrogen.