Abstract:
The disclosure provides macrolide particulates including a macrolide therapeutic agent such as rapamycin at high concentration in the particulate. In one method the particulates are made by adding a composition containing an polyoxyethylene sorbitan n-acyl ester, poly(ethyleneimine), or alkylated quaternary ammonium salt to a composition including macrolide dissolved in an alcohol such as ethanol. In another method the particulates are made by adding a non-solvent composition to a composition including macrolide and an alkyl-substituted chromanol dissolved in an alcohol such as ethanol. The formed macrolide particulates have one or more desirable properties including sizes in the range of 0.1 μm to 10 μm, spherical or near spherical shapes, low polydispersity, and/or stability. The macrolide particulates can be used for therapeutic compositions, or in association with an implantable or insertable medical device, such as associated with a polymeric coating on a device.
Abstract:
Disclosed herein are activatable conductive compositions and methods of making and using activatable conductive compositions. In particular, activatable conductive monomers polymers are described and electrically conductive coatings that include activatable conductive polymers.
Abstract:
Embodiments of the disclosure include lubricious coatings. In an embodiment the disclosure includes a lubricious coating for a medical device including first and second coated layers. The first coated layer is between the second coated layer and the device surface and includes a vinyl pyrrolidone polymer and a photo reactive group. The second coated layer is in direct contact with the first coated layer and is a top coating that includes an acrylic acid polymer. The second coated layer can optionally include photoreactive groups. The coating was found to have a very low number of particulates (e.g., 10 μm or greater) which is very desirable for in vivo use.
Abstract:
Embodiments of the invention include wound packing devices and methods of making and using the same. In an embodiment, the invention includes a wound packing device including a plurality of spacing elements capable of absorbing exudate, wherein the surface of the spacing elements resist colonization by microorganisms. The wound packing device can also include a connector connecting the plurality of spacing elements to one another. Other embodiments are also included herein.
Abstract:
The invention is directed to medical device coatings, such as coated guidewires and catheters, containing a visualization moiety providing color to the coating in ambient or applied light. The coating allows for visual or machine inspection of coating properties such as uniformity of coverage. In some embodiments the coatings include the visualization moiety and an activated UV photogroup, which is used to provide covalent bonding in the coating. The visualization moiety can be in particulate form and entrained in the coating, or can be covalently bonded to the hydrophilic polymer backbone. In other embodiments the visualization moiety includes a stilbene chemical group. Exemplary coatings include a hydrophilic vinyl pyrrolidone polymer, which can provide lubricity to the device surface, along with the colored properties.
Abstract:
The invention provides compositions, kits, and methods for performing colorimetric analysis. A substrate is reacted to generate a chromogenic reaction product, and a reaction stop reagent that is a sulfonic acid is added to stop and stabilize the reaction product. The absorbance properties of the chromogenic reaction product can be maintained over significantly longer periods of time of that of conventional reagents and methods. The sulfonic acid can be used in assays such as ELISAs in order to provide a more accurate and safer detection of analytes in a biological sample.
Abstract:
A method of forming a polymer layer on a support surface by the use of a coating agent and polymerizable compounds. The coating agent provides photoreactive groups adapted to attach the agent to the surface, as well as photoreactive groups adapted to remain unattached to the surface, and thus serve as photoinitiators for the activation of polymerizable compounds in order to form a polymer layer thereon. Also provided are coating agents, per se, as well as a method of using such agents and the resultant surfaces and devices fabricated therefrom.
Abstract:
A coating apparatus for coating a rollable device including a device rotator having a pair of rollers and spray nozzle is described. The spray nozzle produces a spray of coating material that is directed towards a gap that is between the rollers of the pair. The majority of any spray not deposited on the rollable device during a coating process passes through the gap between the rollers.
Abstract:
The invention provides a device for holding a substrate during deposition processes that includes a rotation member rotatable about a first, central axis, and a plurality of substrate holders positioned on the rotation member, the substrate holders being rotatable about second axes. In another aspect, the invention provides a method of applying a substantially uniform coating on a substrate including the steps of providing a device of the invention; mounting a substrate onto the substrate mounts; providing at least one substrate coating station in spaced relation to the substrate mounts; rotating the rotation member about a central axis to position one or more of the substrate mounts at the substrate coating station; supplying the coating through the nozzle; moving the nozzle of the coating station in a direction parallel to the substrate at a predetermined rate to apply a uniform coating on the substrate; and rotating the substrate mounts about the second axes during the coating process.
Abstract:
Surface coatings including microparticles immobilized in a matrix of polymeric material on a substrate are described. The microparticles can also include an agent which can be useful for various applications, such as medical applications. This invention relates to the field of surface coatings for use in various applications. More particularly, the invention relates to surface coating useful for drug delivery, imaging and other uses of microparticles immobilized via a polymeric matrix.