摘要:
In accordance with the objectives of the invention a new method is provided to tune the Edge Bead Remove hump and to further prevent a pointed or tip shaped Edge Bead Remove edge, thus preventing peeling of the low-k dielectric film after the process of Chemical Mechanical Polishing of the low-k film.
摘要:
Semiconductor devices and methods of forming the semiconductor devices using an HTS (High Temperature Superconductor) layer in combination with a typical diffusion layer between the dielectric material and the copper (or other metal) conductive wiring. The HTS layer includes a superconductor material comprised of barium copper oxide and a rare earth element. The rare earth element yttrium is particularly suitable. For semiconductor devices having other semiconductor circuits or elements above the wiring, a capping layer of HTS material is deposited over the wiring before a cover layer of dielectric is deposited.
摘要:
Within a sequential and repetitive thermal oxidation and stripping method for forming a plurality of gate dielectric layers having a maximum numbered plurality of thicknesses upon a semiconductor substrate, there is provided a compensating thermal annealing when forming less than the maximum numbered plurality of thicknesses of the plurality of gate dielectric layers upon the semiconductor substrate. By employing the compensating thermal annealing, the semiconductor substrate is more readily manufacturable in conjunction with related microelectronic fabrications.
摘要:
Within a method for forming a dual damascene aperture there is surface treated a first dielectric layer to form a surface treated first dielectric layer having a first surface composition different than a first bulk composition. There is then formed upon the surface treated first dielectric layer a second dielectric layer having a second bulk composition. Finally, there is then formed through the second dielectric layer a trench contiguous with and overlapping a via formed through the surface treated first dielectric layer. Within the present invention, when forming the trench through the second dielectric layer an endpoint is determined by detecting a difference between the second bulk composition and the first surface composition.
摘要:
A method of simultaneously forming differential gate oxide for both high and low voltage transistors using a two-step wet oxidation process is described. A semiconductor substrate is provided wherein active areas of the substrate are isolated from other active areas and wherein there is at least one low voltage area in which a low voltage transistor will be formed and at least one high voltage area in which a high voltage transistor will be formed. The surface of the semiconductor substrate is wet oxidized to form a first layer of gate oxide on the surface of the semiconductor substrate in the active areas. The low voltage active area is covered with a mask. The surface of the semiconductor substrate is wet oxidized again where it is not covered by the mask to form a second layer of gate oxide under the first gate oxide layer in the high voltage active area. The mask is removed. A layer of polysilicon is deposited overlying the first gate oxide layer in the low voltage active area and overlying the second gate oxide layer in the high voltage active area and patterned to form gate electrodes for the low voltage and high voltage transistors in the fabrication of an integrated circuit.
摘要:
A method is provided whereby successive layers of bond pads can be created. A pattern is created in the preceding level of metal bond pad, a dielectric is deposited over this pattern, openings are created in the dielectric that match the pattern, an opening is created above this pattern and metal is deposited inside this opening creating a square metal bond pad that is joined to the pattern that has been created in the metal of the preceding bond pad.
摘要:
A general process is described for filling a hole or trench at the surface of an integrated circuit without trapping voids within the filler material. A particular application is the filling of a trench with copper in order to form damascene wiring. First, a seed layer is deposited in the hole or trench by means of PVD. This is then followed by a sputter etching step which removes any overhang of this seed layer at the mouth of the trench or hole. A number of process variations are described including double etch/deposit steps, varying pressure and voltage in the same chamber to allow sputter etching and deposition to take place without breaking vacuum, and reduction of contact resistance between wiring levels by reducing via depth.
摘要:
Within a dual damascene method for forming a dual damascene aperture within a microelectronic fabrication there is employed a first etch stop layer formed of a first material and a second etch stop layer formed of a second material. One of the first material and the second material is a non-nitrogenated silicon carbide material and the other of the first material and the second material is a nitrogenated silicon carbide material. By employing the first material and the second material, there may be etched completely through the first etch stop layer to reach a contact region formed there beneath while not etching completely through the second etch stop layer to reach a first dielectric layer formed there beneath.
摘要:
Within a method for forming a series of gate dielectric layers having a plurality of thicknesses upon a semiconductor substrate, there is sequentially selectively stripped only a series of sacrificial gate dielectric layers only in locations where new gate dielectric layers are desired to be formed, rather masking a only a portion of a partially sacrificial gate dielectric layer which is desired to be retained and stripping a sacrificial remainder of the gate dielectric layer. By employing the sequential selective stripping method, a semiconductor integrated circuit microelectronic fabrication is formed with enhanced reliability insofar as there is attenuated over etching into isolation regions which separate active regions of a semiconductor substrate.
摘要:
In the presently disclosed invention, a method is provided to avoid damage to a copper interconnect while subjecting the interconnect to chemical-mechanical polishing (CMP). First, a copper barrier layer is formed in a damascene structure. Then, prior to the deposition of copper metal into the damascene openings, a barrier layer is formed on the inside walls of the damascene structure. In a first embodiment, the copper barrier layer is deposited at high temperature. Then, it is cooled down in a prescribed manner. Subsequently, a copper seed layer is formed over the barrier, which is followed by the electro-chemical deposition (ECD) of copper, to form the copper damascene interconnect. Alternatively, in a second embodiment, the copper layer is formed at low temperature. Then it is annealed at a high temperature, followed by wafer cooling. Subsequently, copper seed layer is formed over the barrier layer. Next, ECD copper is formed in the damascene structure. Finally, the interconnect so formed by either of the embodiments is subjected to CMP. It is found that, through the disclosed method of treatment of the barrier layer, process stresses that are normally formed within the barrier layer are relieved, and hence no damage is incurred during the final steps of chemical-mechanical polishing.