Abstract:
Disclosed is a method and system for passively aligning optical fibers (4), a first waveguide array (62), and a second waveguide array (42) using chip-to-chip vertical evanescent optical waveguides (44) and (64), that can be used with fully automated die bonding equipment. The assembled system (2, 30, 60) can achieve high optical coupling and high process throughput for needs of high volume manufacturing of photonics, silicon photonics, and other applications that would benefit from aligning optical fibers to lasers efficiently.
Abstract:
A method for capturing a high-quality cardiac plethysmography signal automatically and seamlessly using the video cameras embedded in personal electronic devices, includes a program running in the background that periodically takes a picture of the person using the device, runs face detection and/or recognition algorithm, and upon detection of a face, records a video, and then processes the video using algorithms to assess video quality by extracting video quality parameters. When video quality parameters are above predefined thresholds, the recorded video is processed further to generate a plethysmography signal indicative of cardiac activity. The plethysmography signal may then be processed to deduce cardiac activity. The method maintains a pleasurable user experience with the personal electronic devices.
Abstract:
A system and method include contactless detecting and tracking cardiac activity by making use of a feedback control system, such as a Phase Locked Loop (PLL), in real-time or from a prerecorded signal stream.
Abstract:
A dosimetry apparatus includes at least one sensor in a housing, a cover configured to permit compression waves to pass through, the cover is seated over the at least one sensor, and a dosimetry processing device with a memory. The dosimetry processing device is coupled to the at least one sensor in the housing. The dosimetry processing device is configured to execute programmed instructions stored in the memory comprising: obtaining readings from the at least one sensor; storing the readings with a time and date stamp when obtained; conducting an analysis based on the obtained readings; and outputting at least one of the stored readings or the conducted analysis.
Abstract:
Material properties are manipulated using rapid pulse application of energy in combination with applied electric or magnetic fields. When sintering, annealing or crystallizing a target film, the pulse repetition cycle can be constrained to ensure material temperature rises above and falls below the Curie temperature before the next energy pulse. This process results in enhanced material properties as compared to traditional techniques having a single, slow temperature excursion and subsequent application of the applied external field.
Abstract:
A sensor antenna including a thin film material constructed in the shape of an antenna having a response, the material including a sheet resistance capable of being modified by an external stimulus where the antenna response varies over a range of sheet resistance values; method of making a sensor antenna; system including a sensor antenna; and method for operating a thin film sensor antenna including providing a thin film sensor antenna; exposing the sensor antenna to an external stimulus, simultaneously sensing the external stimulus while varying the sensor antenna response, measuring the change in the sensor antenna response, and correlating the measured response to a known change in the stimulus are disclosed.
Abstract:
An electrochemical cell having a positive electrode; a negative electrode and an electrolyte, wherein the electrochemical cell contains reversible ions in an amount sufficient to maintain a negative electrode potential verses reference level below a negative electrode damage threshold potential of the cell and a positive electrode potential verses reference level above a positive electrode damage threshold potential of the cell under an applied load at a near zero cell voltage state, such that the cell is capable of recharge from the near zero cell voltage state, and method for its production is disclosed.
Abstract:
A multimedia capture system includes a plurality of imaging systems and one or more detection systems. The plurality of imaging systems capture image areas of a scene from at least partially different locations. The one or more detection systems determine a relative position of each of the plurality of imaging systems with respect to the different locations of the scene from where the image areas are captured. The relative position of each of the plurality of imaging systems and the captured image areas are used to generate a multimedia presentation of the scene. The capture system may be worn by an individual or may be on a stationary or mobile support.
Abstract:
A dosimetry device includes at least one sensor in a housing and a dosimetry processing device with a memory. The dosimetry processing device is coupled to the at least one sensor in the housing. The dosimetry processing device is configured to execute programmed instructions stored in the memory comprising: obtaining readings from the sensor; storing the readings; conducting an analysis of the stored readings to determine an injury risk assessment; and outputting at least one of the conducted analysis of the determined injury risk assessment or the stored readings.
Abstract:
A process and system for the electrochemical production of graphene, graphene oxide, graphene quantum dots, graphene/graphene oxide metal composites, graphene/graphene oxide coated substrates and graphene/graphene oxide metal composite coated substrates in a single step process involving no secondary purifications utilizes an electrochemical cell containing electrodes with variable gaps including a zero gap, containing an anode electrode including graphite, a cathode electrode including electrically conductive material with an electrolyte-free electrochemical bath including water and an organic liquid that produces joule heating along with oxygen embrittlement.