Abstract:
According to the present invention, different frequency reuse patterns are used when scheduling critical and non-critical data transmissions. More specifically, the present invention uses a first reuse pattern for scheduling the transmission of critical data and a second reuse pattern for scheduling the transmission of non-critical data. The invention can be applied to any inbound or outbound time slotted protocol that have message fragments spanning over one or more time slots. The reuse pattern can be varied slot by slot, to use a less aggressive reuse for communicating critical data and a more aggressive reuse for communicating non-critical data. As a result, data can be communicated more reliably and throughput can be increased by protecting critical data transmissions via a less aggressive reuse.
Abstract:
A method for requesting and dispatching emergency services to a wireless communications network customer (102) is provided. When a request for emergency services is transmitted by a customer (102), the request is sent to a monitoring center (108), whereupon the monitoring center (108) evaluates the location of the customer (102), the personal profile of the customer (102), and the nature of the request. The monitoring center (108) then issues an appropriate dispatch to a pool of emergency services providers (110).
Abstract:
A Message Digest Hardware Accelerator (MDHA) 10 for implementing multiple cryptographic hash algorithms such as the Secure Hashing Algorithm 1 (SHA-1), the Message Digest 4 (MD4) algorithm and the Message Digest 5 (MD5) algorithm. A register file (12) is initialized to different data values. A function circuit (22) performs logical operations based on the selected algorithm and provides a data value to a summing circuit (30) that is summed with mode dependent constant values selected from registers (34 and 36), round and step dependent data words generated by a register array block (32) to calculate the hash value for a text message stored in registers (100-115).
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. A monocrystalline graded layer, in which the lattice constant varies with the thickness of the layer, is then formed over the accommodating buffer layer, such that a lattice constant of the top of the graded layer substantially matches the lattice constant of a subsequently grown monocrystalline film.
Abstract:
A high quality epitaxial layer of monocrystalline Pb(Mg,Nb)O3nullPbTiO3 or Pb(Mg1-x-Nbx)O3nullPbTiO3 can be grown overlying large silicon wafers by first growing an strontium titanate layer on a silicon wafer. The strontium titanate layer is a monocrystalline layer spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide.
Abstract:
A method for Radio Network Controller (RNC) initiated Radio Access Bearer (RAB) negotiation or renegotiation/reconfiguration in a communication system that includes a core network and user equipment coupled to an RNC in a Universal Terrestrial Radio Access Network. When the core network establishes a service (e.g. voice call, web surfing session) with the user equipment, a RAB is set up for that service. The RAB includes certain parameters that effect the quality of the service. As the RNC monitors radio conditions, it may determine that one or more of the RAB parameters need to be modified. The RNC will initiate a RAB renegotiation/reconfiguration procedure by sending a RAB Modification Request Message to the CN specifying that a modification to the RAB is needed and the manner is which the modification should be affected. The CN may send a RAB Assignment Request Message informing the RNC whether the modification is acceptable.
Abstract:
A method for adjusting an OLT for power control, which is capable of closely tracking a low tFER. The OLT is adjusted based on frame quality indicator FQI and channel quality metrics. FQI and channel quality metrics are generated at the receiver of a base transceiver station after reception of a frame. If FQI equal to a logic zero was generated, the OLT is adjusted upwards using a first stepsize. If FQI equal to a logic one was generated for a certain amount of consecutive frames, the OLT is adjusted downwards using a second stepsize. The OLT is also fine-tuned during the intervals between the transitions caused by applying the first stepsize or second stepsize. The first and second stepsizes and the amount of consecutive frames of FQInull1 before OLT is adjusted downwards are determined adaptively according to time-varying channel conditions and received frame quality indicator.
Abstract:
An apparatus (100) and method (800) for forming high quality epitaxial layers of monocrystalline materials grown overlying monocrystalline substrates (310) such as large silicon wafers is provided. The apparatus (100) includes at least two deposition chambers (110) and (140) that are coupled together. The first chamber (110) is used to form an accommodating buffer layer (320) on the substrate (310) and the second (140) is used to form a layer of monocrystalline material (330) overlying the accommodating buffer layer (320).
Abstract:
A decoder for a receiver which after receiving its address code waits for an activation code before enabling its message output in anticipation of receiving a transmitted message. Alternatively the receiver, after it receives its address, may wait for an activation code before alerting or outputting an internally generated message.
Abstract:
Adaptive scaling circuitry connected to local scalars to accummulate digital shifts during calculations and associate the shifts with particular quantities involved. The circuitry also supplies shift commands to certain scalers so that calculations such as adding and subtracting can be performed. The shifting of digital words is performed so that optimum use of the number of bits in a word may be made. In complex computation systems the adaptive scaling takes the place of an AGC function throughout the computations.