Abstract:
Methods and systems permit a user to decide what different responses are triggered when different visual stimuli are presented to the user's wireless communications device.
Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. In one detailed arrangement, image processing tasks applied to the scene are selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone applies more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In another detailed arrangement, data is referred to the cloud for analysis, or for gleaning. In still another detailed arrangement, cognition, and identification of appropriate device response(s), is aided by collateral information, such as context. A great number of other features and arrangements are also detailed.
Abstract:
Content objects are associated with metadata via content identifiers that are derived from sensed signals captured by requesting mobile devices. In response to a content based query from a mobile device, content fingerprints and extracted digital codes decoded from the sensed signals are issued to a network based router system. This system determines identification priority, metadata responses associated with different forms of identification, and priority of metadata responses to the query.
Abstract:
Arrangements involving portable devices (e.g., smartphones and tablet computers) are disclosed. One arrangement enables a content creator to select software with which that creator's content should be rendered—assuring continuity between artistic intention and delivery. Another utilizes a device camera to identify nearby subjects, and take actions based thereon. Others rely on near field chip (RFID) identification of objects, or on identification of audio streams (e.g., music, voice). Some technologies concern improvements to the user interfaces associated with such devices. Others involve use of these devices in connection with shopping, text entry, sign language interpretation, and vision-based discovery. Still other improvements are architectural in nature, e.g., relating to evidence-based state machines, and blackboard systems. Yet other technologies concern use of linked data in portable devices—some of which exploit GPU capabilities. Still other technologies concern computational photography. A great variety of other features and arrangements are also detailed.
Abstract:
The present disclosure relates generally to mobile devices and content recognition. One claim recites a mobile device comprising: a sensor; a display screen; memory storing instructions for execution by a processor; and one or more processors programmed with said instructions for: obtaining information from the sensor; selecting a user profile from among a plurality of different user profiles based on the information; and selecting—based on a selected user profile—an image or graphic for display on the display screen, the image or graphic being associated with the selected user profile. Other claims and combinations are provided as well.
Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. The image processing tasks applied to the scene can be selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone can apply more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In some arrangements, data may be referred to the cloud for analysis, or for gleaning. Cognition, and identification of appropriate device response(s), can be aided by collateral information, such as context. A great number of other features and arrangements are also detailed.
Abstract:
Wireless beacons, such as short range Bluetooth beacons, are combined with other technologies—including audio and image recognition technologies (e.g., fingerprint- or digital watermark-based)—to provide a variety of enhanced capabilities and services.
Abstract:
Audio sounds are captured from a subject's body, e.g., using a smartphone or a worn array of microphones. Plural features are derived from the captured audio, and serve as fingerprint information. One such feature may be a time interval over which a threshold part of spectral energy in the audio is expressed. Another may be a frequency bandwidth within which a second threshold part of the spectral energy is expressed. Such fingerprint information is provided to a knowledge base that contains reference fingerprint data and associated metadata. The knowledge base matches the fingerprint with reference fingerprint data, and provides associated metadata in return—which can comprise diagnostic information related to the captured sounds. In some arrangements, an audio signal or pressure waveform stimulates the body at one location, and is sensed at another, to discern information about the intervening transmission medium. A great variety of other features and arrangements are also detailed.
Abstract:
The present disclosure relates generally to the technological arts of digital watermarking and fingerprinting. One claim recites a method comprising: obtaining digital data representing imagery captured with a camera; storing the digital data at a location in electronic memory; processing the digital data with a processor, said processing comprising generating a digital fingerprint of the imagery; storing the digital fingerprint of the imagery and the location in a storage repository or index; transforming the digital data with digital watermarking upon a request to output the digital imagery to a physical domain, said digital watermarking comprising a plural bit identifier; and associating the plural bit identifier with the fingerprint and location in the storage repository or index. Of course, other combinations, features and claims are disclosed as well.
Abstract:
Cell phones and other devices are used to complement enjoyment of television or other video media, through use of corresponding software applications (“widgets”). A great variety of related features and arrangements are particularly detailed.