Abstract:
A pressure sensor for a pressure medium includes: a sensor chip including a semiconductor substrate, a diaphragm in the substrate and a gauge resistor on the diaphragm; a protection cap covering the diaphragm; a case for accommodating the chip, introducing the pressure medium to the cap, and atmospheric air to the substrate; a terminal; a wiring; and a seal member. An embedded portion of the wiring is coupled with the gauge resistor. A connection portion of the wiring couples the embedded portion and the terminal. The embedded portion is covered with the cap to be isolated from the pressure medium. The seal member is disposed between the case and the substrate to isolate the connection portion from the pressure medium and the atmospheric air.
Abstract:
A semiconductor device includes a sensor portion, a cap portion, and an ion-implanted layer. The sensor portion has a sensor structure at a surface portion of a surface. The cap portion has first and second surfaces opposite to each other and includes a through electrode. The surface of the sensor portion is joined to the first surface of the cap portion such that the sensor structure is sealed between the sensor portion and the cap portion. The ion-implanted layer is located on the second surface of the cap portion. The through electrode extends from the first surface to the second surface and is exposed through the ion-implanted layer.
Abstract:
A gallium nitride (GaN) based light emitting diode (LED), wherein light is extracted through a nitrogen face (N-face) of the LED and a surface of the N-face is roughened into one or more hexagonal shaped cones. The roughened surface reduces light reflections occurring repeatedly inside the LED, and thus extracts more light out of the LED. The surface of the N-face is roughened by an anisotropic etching, which may comprise a dry etching or a photo-enhanced chemical (PEC) etching.
Abstract:
A single crystal silicon substrate (1) is bonded through an SiO2 film (9) to a single crystal silicon substrate (8), and the single crystal silicon substrate (1) is made into a thin film. A cantilever (13) is formed on the single crystal silicon substrate (1), and the thickness of the cantilever (13) in a direction parallel to the surface of the single crystal silicon substrate (1) is made smaller than the thickness of the cantilever in the direction of the depth of the single crystal silicon substrate (1), and movable in a direction parallel to the substrate surface. In addition, the surface of the cantilever (13) and the part of the single crystal silicon substrate (1), opposing the cantilever (13), are, respectively, coated with an SiO2 film (5), so that an electrode short circuit is prevented in a capacity-type sensor. In addition, a signal-processing circuit (10) is formed on the single crystal silicon substrate (1), so that signal processing is performed as the cantilever (13) moves.
Abstract:
A physical quantity sensor for detecting a physical quantity includes: a first substrate having a first physical quantity detection element; a second substrate having a second physical quantity detection element, wherein the second substrate contacts the first substrate; and an accommodation space disposed between the first substrate and the second substrate. The first physical quantity detection element is disposed in the accommodation space. The first physical quantity detection element is protected with the first substrate and the second substrate since the first physical quantity detection element is sealed in the accommodation space.
Abstract:
A semiconductor device includes a semiconductor substrate, an element portion provided in the semiconductor substrate, and a connecting portion connected to the semiconductor substrate electrically, in which the connecting portion is formed of a conductive material in order to perform an electrical connection to an outside. The connecting portion is directly in contact with a surface of the semiconductor substrate such that the connecting portion and the semiconductor substrate are connected electrically.
Abstract:
A semiconductor device includes a first substrate including first, second and third layers; and a second substrate including fourth, fifth and sixth layers. The first substrate provides an electric device. The second substrate provides a physical quantity sensor. The first layer of the first substrate and the fourth layer of the second substrate are shields for protecting the electric device and the physical quantity sensor. The device is protected from outside disturbance without adding an additional shield.
Abstract:
A pressure sensor for a pressure medium includes: a sensor chip (3) including a semiconductor substrate (3a), a diaphragm (3b) in the substrate and a gauge resistor (3c) on the diaphragm; a protection cap (5) covering the diaphragm; a case (2) for accommodating the chip, introducing the pressure medium to the cap, and atmospheric air to the substrate; a terminal (2c); a wiring (4); and a seal member (7). An embedded portion (4a-4c, 4e) of the wiring is coupled with the gauge resistor. A connection portion (4d, 4f) of the wiring couples the embedded portion and the terminal. The embedded portion is covered with the cap to be isolated from the pressure medium. The seal member is disposed between the case and the substrate to isolate the connection portion from the pressure medium and the atmospheric air.
Abstract:
In a manufacturing of a semiconductor device, at least one of elements is formed in each of element formation regions of a substrate having a main side and a rear side, and the substrate is thinned by polished from a rear side of the substrate, and then, multiple trenches are formed on the rear side of the substrate, so that each trench reaches the main side of the substrate. After that, an insulating material is deposited over an inner surface of each trench to form an insulating layer in the trench, so that the element formation regions are isolated. Thereby, generation of cracks and structural steps in the substrate and separation of element formation regions from the substrate can be suppressed.
Abstract:
A semiconductor device includes: a first substrate made of semiconductor and having first regions, which are insulated from each other and disposed in the first substrate; and a second substrate having electric conductivity and having second regions and insulation trenches. Each insulation trench penetrates the second substrate so that the second regions are insulated from each other. The first substrate provides a base substrate, and the second substrate provides a cap substrate. The second substrate is bonded to the first substrate so that a sealed space is provided between a predetermined surface region of the first substrate and the second substrate. The second regions include an extraction conductive region, which is coupled with a corresponding first region.