Abstract:
Transistor noise tolerant, non-volatile (NV) resistance element-based static random access memory (SRAM) physically unclonable function (PUF) circuits and related systems and methods. In exemplary aspects, a transistor and its complementary transistor, such as a pull-up transistor and complement pull-down transistor or pull-down transistor and complement pull-up transistor, of the PUF circuit are replaced with passive NV resistance elements coupled to the respective output node and complement output node to enhance imbalance between cross-coupled transistors of the PUF circuit for improved PUF output reproducibility. The added passive NV resistance elements replacing pull-up or pull-down transistors in the PUF circuit reduces or eliminates transistor noise that would otherwise occur if the replaced transistors were present in the PUF circuit as a result of changes in temperature, voltage variations, and aging effect. The bit error rate of the PUF circuit is reduced by the reduction in transistor noise thereby improving PUF output reproducibility.
Abstract:
Metal-oxide semiconductor (MOS) transistor offset-cancelling (OC), zero-sensing (ZS) dead zone, current-latched sense amplifiers (SAs) (CLSAs) (OCZS-SAs) for sensing differential voltages are provided. An OCZS-SA is configured to amplify received differential data and reference input voltages with a smaller sense amplifier offset voltage to provide larger sense margin between different storage states of memory bitcell(s). The OCZS-SA is configured to cancel out offset voltages of input and complement input transistors, and keep the input and complement input transistors in their activated state during sensing phases so that sensing is not performed in their “dead zones” when their gate-to-source voltage (Vgs) is below their respective threshold voltages. In other aspects, sense amplifier capacitors are configured to directly store the data and reference input voltages at gates of the input and complement input transistors during voltage capture phases to avoid additional layout area that would otherwise be consumed with additional sensing capacitor circuits.
Abstract:
An amplifier circuit with improved accuracy is provided that comprises a cascade of amplifier stages, a control line for controlling the amplifier stages, a feedback circuit having an input port for receiving a reference signal, and a feedback loop connecting the feedback circuit to the control line. Via the feedback circuit and the feedback loop, the large signal behavior of the amplifier stage is accurately fixed. As a result, the small signal gain of the amplifier stages has an improved accuracy as well.
Abstract:
A differential sensing scheme provides a means for detecting one or more touch events on a touch sensitive device in the presence of incident noise. Instead of sensing one touch sensitive channel, such as a row, column, or single touch sensor, multiple touch sensitive channels are sampled at a time. By sampling two nearby channels simultaneously and doing the measurement differentially, noise common to both channels is cancelled. The differential sensing scheme is implemented using simple switch-capacitor AFE circuitry. The originally sensed data on each individual channel is recovered free of common-mode noise. The recovered sensed data is used to determine the presence of one or more touch events and if present the location of each touch event on the touch sensitive device.
Abstract:
Apparatus and methods for activity based plasticity in a spiking neuron network adapted to process sensory input. In one approach, the plasticity mechanism of a connection may comprise a causal potentiation portion and an anti-causal portion. The anti-causal portion, corresponding to the input into a neuron occurring after the neuron response, may be configured based on the prior activity of the neuron. When the neuron is in low activity state, the connection, when active, may be potentiated by a base amount. When the neuron activity increases due to another input, the efficacy of the connection, if active, may be reduced proportionally to the neuron activity. Such functionality may enable the network to maintain strong, albeit inactive, connections available for use for extended intervals.
Abstract:
Apparatus and methods for event based communication in a spiking neuron network. The network may comprise units communicating by spikes via synapses. The spikes may communicate a payload data. The data may comprise one or more bits. The payload may be stored in a buffer of a pre-synaptic unit and be configured to accessed by the post-synaptic unit. Spikes of different payload may cause different actions by the recipient unit. Sensory input spikes may cause postsynaptic response and trigger connection efficacy update. Teaching input spikes trigger the efficacy update without causing the post-synaptic response.
Abstract:
A digital camera system for super resolution image processing is provided. The digital camera system includes a resolution enhancement module configured to receive at least a portion of an image, to increase the resolution of the received image, and to output a resolution enhanced image and an edge extraction module configured to receive the resolution enhanced image, to extract at least one edge of the resolution enhanced image, and to output the extracted at least one edge of the resolution enhanced image, the at least one edge being a set of contiguous pixels where an abrupt change in pixel values occur. The digital camera system also includes an edge enhancement module configured to receive the resolution enhanced image and the extracted at least one edge, and to combine the extracted at least one edge or a derivation of the extracted at least one edge with the resolution enhanced image.
Abstract:
A system and method are disclosed for communicating coherency information between initiator and target agents on semiconductor chips. Sufficient information communication to support full coherency is performed through a socket interface using only three channels. Transaction requests are issued on one channel with responses given on a second. Intervention requests are issued on the same channel as transaction responses. Intervention responses are given on a third channel. Such an approach drastically reduces the complexity of cache coherent socket interfaces compared to conventional approaches. The net effect is faster logic, smaller silicon area, improved architecture performance, and a reduced probability of bugs by the designers of coherent initiators and targets.
Abstract:
An RF device includes a substrate and a series circuit of a tunable RF component and a DC blocking capacitor. The series circuit is arranged on the substrate and couples an RF signal terminal to a fixed voltage terminal that is electrically isolated from the RF signal terminal. The tunable RF component is coupled to the RF signal terminal, the DC blocking capacitor is coupled to the fixed voltage terminal and a driver terminal is coupled to the tunable RF component.
Abstract:
A system and method are disclosed for communicating coherency information between initiator and target agents on semiconductor chips. Sufficient information communication to support full coherency is performed through a socket interface using only three channels. Transaction requests are issued on one channel with responses given on a second. Intervention requests are issued on the same channel as transaction responses. Intervention responses are given on a third channel. Such an approach drastically reduces the complexity of cache coherent socket interfaces compared to conventional approaches. The net effect is faster logic, smaller silicon area, improved architecture performance, and a reduced probability of bugs by the designers of coherent initiators and targets.