Abstract:
The present application relates to perfume compositions, delivery systems comprising such perfumes products comprising such perfumes and/or delivery systems, and processes for making and using same. Such perfume compositions, delivery systems comprising such perfumes and products containing such perfumes and/or delivery systems can deliver a character that can signal/connotes that a situs treated with such materials has superior cleanliness and is essentially asepsis.
Abstract:
A consumer product including a personal care composition providing multiple blooms of fragrance, the multiple blooms being provided for by different populations of microcapsules.
Abstract:
The method for obtaining a nano-capsule structure includes at least one layer of resin deposited on a layer of substrate. The capsule nanometric in size is capable of enabling the encapsulation of a compound. The layer of resin is structured, by low voltage electron lithography, or by optical lithography or by nanoimprinting in such a way as to obtain at least one cavity in the thickness of the layer of resin. The cavity has a depth smaller than the thickness of the layer of resin. At least one layer of an encapsulating material is isotropically deposited by sputtering the material under vacuum. The cavity is sealed with a sealing material. The layer of resin is dissolved by soaking in a suitable solvent.
Abstract:
The present invention broadly relates to a process for preparing products comprising active components, and in particular biological materials, wherein the active components are stabilized. The invention further relates to compositions comprising the products, and in particular compositions comprising therapeutic biological materials.
Abstract:
Microencapsulation of bioactive and chemical cargo in a stable, cross-linked polymer matrix is presented that results in small particle sizes and is easily scaled-up for industrial applications. A formulation of a salt of an acid soluble multivalent ion, an acid neutralized with a volatile base and one or more monomers that cross-link in the presence of multivalent ions is atomized into droplets. Cross-linking is achieved upon atomization where the volatile base is vaporized resulting in a reduction of the pH of the formulation and the temporal release of multivalent ions from the salt that cross-link the monomers forming a capsule. The incorporation of additional polymers or hydrophobic compounds in the formulation allows control of hydration properties of the particles to control the release of the encapsulated compounds. The operational parameters can also be controlled to affect capsule properties such as particle-size and particle-size distribution.
Abstract:
The present invention relates to a microencapsulate comprising microcapsules having a diameter of 0.1 μm to 25 μm, said microcapsules comprising: —a core particle having a diameter of 90 nm to 23 μm and containing at least 3% of the active component by weight of said core particle; and—a coating that fully envelops the core particle and containing at least 20 wt. % of a hydrophobic polymer selected from cellulosic ethers, cellulosic esters, zein, shellac, gluten, polylactide, hydrophobic starch derivatives, polyvinyl acetate polymers, polymers or copolymers derived from an acrylic acid ester and/or a methacrylic acid ester and combinations thereof; wherein the core particle contains a release trigger component and/or the coating contains a release trigger component, said release trigger component being selected from: —a water-swellable polymer having a water-uptake capacity at 37° C. and pH 7.0 of less than 20 wt. % and a water-uptake capacity at 37° C. and pH 2.0 of at least 50 wt. %; and—an edible salt having a water solubility at 37° C. and a pH of 7.0 of less than 1 mg/ml and a water solubility at 37° C. and a pH of 2.0 of at least 5 mg/ml; The microencapsulate of the present invention does not release the encapsulated active component when incorporated in water-containing foodstuffs, beverages, nutritional compositions or pharmaceutical compositions. Following ingestion, however, the active component is released rapidly.
Abstract:
The present invention generally relates to the field of pharmaceutical sciences. More specifically, the present invention includes apparatus and devices for the preparation of pharmaceutical formulations containing large diameter synthetic membrane vesicles, such as multivesicular liposomes, methods for preparing such formulations, and the use of specific formulations for therapeutic treatment of subjects in need thereof. Formation and use of the pharmaceutical formulations containing large diameter synthetic membrane vesicles produced by using the apparatus and devices for therapeutic treatment of subjects in need thereof is also contemplated.
Abstract:
The present invention provides an antimicrobial material in an encapsulated form, comprising (i) a core comprising an antimicrobial material and (ii) a shell of encapsulating material, wherein the shell of encapsulating material is impermeable to the antimicrobial material. The invention further provides a process for introducing an antimicrobial material into a foodstuff comprising (i) providing the antimicrobial material in an encapsulated form comprising a core of antimicrobial material and shell of encapsulating material, and (ii) introducing encapsulated antimicrobial material into or onto the foodstuff.
Abstract:
The present invention relates to a coarsely divided microcapsule preparation with particles whose particle sizes are in the range from 200 μm to 5 cm, comprising microcapsules with a capsule core of latent heat storage material and a thermosetting polymer as capsule wall and one or more polymeric binders whose binder polymer has thermoplastic properties and film-forming properties under processing conditions, where the binder content, calculated as solid, is 1-30% by weight, based on the total weight of the coarsely divided microcapsule preparation.
Abstract:
The invention relates to liquid or gel-like compositions comprising microencapsulated colorant granules consisting of a core (A) and a shell (B), whereby the core (A) has a diameter of between 1 and 1000 micrometer and comprises a) a colorant (I), b) microcrystalline cellulose, c) a polyol; and whereby the shell (B) has a thickness of between 1 to 500 micrometer and comprises d) a polymer selected from the group consisting of polycarboxylic acids, vinyl polymers, styrene- (meth)acrylic copolymers, cellulose and cellulose derivatives.