Abstract:
An inlet valve charges an inner chamber with liquid and has a first axis and an inlet opening with a tool that automatically recloses. The inlet valve has a valve body with a blocking element, and a pressing part; a valve space enclosing the valve body at least partly; a spring mechanism and a sealing element. An open passage region opens into the liquid passage of the pressing part and into the valve space. The spring mechanism presses a sealing surface of the blocking element against the sealing element in a closed position of the valve body. The valve body of the inlet valve can be brought to an open position by pressing the pressing part against the resistance of the spring mechanism. Chamber systems and sample containers with such inlet valves are also disclosed.
Abstract:
The invention relates to a microplate reader and a respective method, wherein the microplate reader comprises at least one measuring device and a holding device for accommodating at least one microplate and for positioning the samples-containing wells of this(these) microplate(s) in relation to the at least one measuring device. The at least one measuring device is used for detecting light which is emitted by samples in wells of a microplate inserted in this microplate reader and/or which is influenced by samples transilluminated by light in wells of a microplate inserted in this microplate reader. The microplate reader comprises a control unit for controlling the temperature of a gas atmosphere surrounding the wells containing the samples of microplates used in this microplate reader.
Abstract:
A disposable cartridge configured as a digital microfluidics system for manipulating samples in liquid portions having a cartridge accommodation site and a central control unit for controlling selection of individual electrodes of an electrode array located at the site and for providing plural electrodes with individual voltage pulses for manipulating liquid portions by electrowetting. The cartridge has a hydrophobic working surface and a rigid cover with a second hydrophobic surface, the hydrophobic surfaces facing each other and being separated in parallel planes by a gap. The cartridge has plural pipetting guides for safe entering/withdrawing liquids into/from the gap with a pipette tip. At least one of the pipetting guides provides an abutting surface sealingly admittable by a counter surface of a pipette tip, located at a pipetting orifice that reaches through the rigid cover, and configured to prevent a pipette tip from touching the hydrophobic working surface.
Abstract:
A method for defining an automated process which is to be carried out in a liquid handling system, wherein the liquid handling system comprises an outlet element (e.g. a pipette) for aspirating and/or dispensing a liquid volume, a numerically controlled movement apparatus for carrying out movements in connection with the aspiration/and or dispensing, and a controller for controlling the process, having the following steps: using a graphic user interface in order to enable the user to predetermine parameters which are to be used by the liquid handling system when carrying out one or several substeps of the process, wherein at least a first parameter is dependent on a second parameter in such a way that the first parameter is adjusted automatically by the system if the second parameter changes.
Abstract:
An inlet valve charges an inner chamber of a system or sample container with liquid and has a first pipetting axis, an inlet opening, it supplies liquid by a laboratory pipette that is automatically reclosed and also has a valve body with a blocking element, a pressing part and a throat, a valve space enclosing the valve body at least partly near the throat, a spring mechanism and a sealing element. The throat connects the blocking element to the pressing part and has an open passage region which opens into the liquid passage of the pressing part and into the valve space. The spring mechanism presses a sealing surface of the blocking element against the sealing element in a closed position of the valve body. The valve body can be brought to an open position by pressing the pressing part against the spring mechanism.
Abstract:
A biological sample processing system (1) includes a liquid droplet manipulation instrument (20) with an electrode array (21) for inducing a movement of a liquid droplet (19) by electrowetting; a substrate (22); and a control unit (23). An electrode selector (34) of the control unit (23) is configured to individually select and provide each electrode (35) of the electrode array (21) with a voltage. The control unit (23) includes a central processing unit (36) for individually selecting at least one electrode (35) and for providing the selected electrode(s) (35) with an individual voltage pulse. The biological sample processing system (1) also includes a cartridge (40) with a container (2).
Abstract:
A biological sample processing system comprises a container for large volume processing, a flat polymer film having a lower surface and a hydrophobic upper surface, which is kept at a distance d to the base side of the container by the protrusions. The distance d defines at least one gap when the container is positioned on the film. A liquid droplet manipulation instrument comprises at least one electrode array for inducing liquid droplet movements; a substrate supporting the at least one electrode array; and a control unit is characterized in that the container and the film are reversibly attached to the liquid droplet manipulation instrument. The system thus enables displacement of at least one liquid droplet from the at least one well through the channel of the container onto the hydrophobic upper surface of the flat polymer film and above the at least one electrode array; wherein the liquid droplet manipulation instrument controls a guided movement of the liquid droplet on the hydrophobic upper surface of the flat polymer film by electrowetting and to process there the biological sample.
Abstract:
A laboratory system and a method for controlling a laboratory system comprises multiple subsystems; each subsystem being configured to receive and carry out a command; and a master control device configured to process command groups and/or command(s) within the same command group simultaneously; to process command groups and/or command(s) of different command groups sequentially; and within a command group, to process command group(s) and/or command(s) grouped into a command group before processing other commands command group(s) and/or command(s).
Abstract:
Relates to a microplate carrier (1) for a microplate (2), in whose wells (3) magnetic particles (5), which are suspended in a liquid (4), with or without samples adhering thereto are located, the microplate carrier (1) comprising permanent magnets (6) generating magnetic fields which are implemented to collect and retain the magnetic particles (5) on the floor (14) and/or on the walls (7) of the wells (3) of this microplate (2). The microplate carrier (1) according to the invention is characterized in that it comprises two permanent magnets (6) situated diametrically opposite in relation to the well (3) for each well (3) of the microplate (2), which have the same polarity directed toward the well (3) and whose magnetic axis (25) is at least essentially perpendicular to the footprint of the microplate (2) to be placed. A corresponding method based on the use of the microplate carrier (1) is also disclosed.
Abstract:
A method of detecting an original arrangement of laboratory articles of a laboratory work station records reference digital images with a digital camera. An image is displayed and visible regions with characteristic features are selected by a user within an input device. Reference image sections and corresponding reference image parameter files are produced and stored. A current arrangement of laboratory articles is compared with a previously recorded original arrangement. Detection of the current arrangement occurred by recording current digital images with a digital camera and creating current image sections defined by X/Y parameters of the reference image parameter files from the current digital images. A computer-based comparison of the processed current image sections with the processed reference image sections occurred and an analysis of this comparison and the display of agreements, deviations and errors is found.