Abstract:
A rearview mirror assembly of the present invention includes a circuit board disposed behind the mirror. The circuit board may be a flexible circuit board and may include an LED mounted to project light through a transparent window in the flexible circuit board and through the mirror. The flexible circuit board may function as a mirror heater and may include conductive paths for connection to the LED and/or electrodes of an electrochromic mirror. The LED may include an LED chip mounted directly on the circuit board and encapsulated thereon by an encapsulant.
Abstract:
An LED lighting array is disclosed wherein a plurality of light emitting devices disposed in at least first and second columns are mounted on a planar mounting surface to form an emission plane. The emission axes of all the LEDs in a first column are parallel with each other and lie in a first plane. The emission axes of the LEDs in an adjacent, second column are also parallel, but a second plane containing the emission axes of the second column is disposed at a predetermined, non-zero angle with respect to the first plane. The non-zero angle is a function of the LED beam width and the distance to a lighting target. This configuration of the LEDs provides an optimum balance at a predetermined target distance between the size of the area illuminated and the brightness of the illumination of the target. In one aspect of the invention the LED lighting array includes at least first, second and third columns of LEDs. In another aspect of the invention an LED task light includes a transparent tube and an LED lighting array disposed within the tube. An electrical drive circuit associated with the mounting substrate within the tube provides pulsed direct current for driving the LED's.
Abstract:
A VCSEL die is packaged so that its optical axis is at a predetermined non-perpendicular and nonparallel angle relative to the plane of a PCB to which the packaged die will be mounted. The die is packaged to form an emitting component which is shaped to orient the VCSEL optical axis at the predetermined angle when the component is placed onto a PCB. The component can be used in combination with a flip-chip sensor IC located on an opposite side of a PCB from the emitting component. The component can also be used in combination with a CSP sensor IC on the same side of a PCB. A VCSEL die and sensor IC can be contained in a single package. The optical axis of the VCSEL die packaged with a sensor IC may or may not be perpendicular to a plane of an array in the sensor IC.
Abstract:
A VCSEL die is packaged so that its optical axis is at a predetermined non-perpendicular and nonparallel angle relative to the plane of a PCB to which the packaged die will be mounted. The die is packaged to form an emitting component which is shaped to orient the VCSEL optical axis at the predetermined angle when the component is placed onto a PCB. The component can be used in combination with a flip-chip sensor IC located on an opposite side of a PCB from the emitting component. The component can also be used in combination with a CSP sensor IC on the same side of a PCB. A VCSEL die and sensor IC can be contained in a single package. The optical axis of the VCSEL die packaged with a sensor IC may or may not be perpendicular to a plane of an array in the sensor IC.
Abstract:
On connection of a control board and an external apparatus, an externally connecting cable which is drawn out from a rear surface of the casing can be drawn out without interfering with other components. A connector terminal 32 which connects the external apparatus is mounted to be inclined with respect to a control board 30 mounted substantially vertically in a cabinet 5, and is mounted along an inclined surface 13A formed in a downward direction in a stepped recessed part 13 of a back cabinet 5B. Thereby, a cable 31 which is connected to the connector terminal 32 does not interfere with a cover portion 13C of the stepped recessed part 13, which covers a support column part 17 of a stand 15.
Abstract:
A chip-component-mounted device comprises a print wiring board or lead frame, an electrically conductive adhesive and a chip component, said chip component being mounted on said print wiring board or lead frame through said electrically conductive adhesive, said chip component having a corner part, a ridgeline of said corner part facing a connected part side of said print wiring board or lead frame, an angle made by a face adjacent to said ridgeline and a face of said connected part being acute.
Abstract:
An assembly is provided which includes a first circuit panel having a top surface, a first dielectric element and first conductive traces disposed on the first dielectric element. In addition, a second circuit panel has a bottom surface, a second dielectric element and second conductive traces disposed on the second dielectric element, where at least a portion of the second circuit panel overlies at least a portion of the first circuit panel. The assembly further includes an interconnect circuit panel having a third dielectric element which has a front surface, a rear surface opposite the front surface, a top end extending between the front and rear surfaces, a bottom end extending between the front and rear surfaces, and a plurality of interconnect traces disposed on the dielectric element. The bottom end of the interconnect element abuts the top surface of the first circuit panel and the top end abuts the bottom surface of the second circuit panel, where at least some of the first conductive traces are in conductive communication with the second conductive traces through the interconnect traces.
Abstract:
In a camera according to the present invention, an edge portion of a lens barrel unit is projected and arranged from a front cover. The lens barrel unit is covered with a front cover cylindrical member connected to the front cover, and a front exposed portion of the front cover cylindrical member is covered with an exterior cylindrical member as a detachable (before-attaching) metal cylindrical member. The exterior cylindrical member is positioned and is fixed by an stop claw on the front-cover side. A C-shaped stop portion cover having flexibility is made flexible and is attached around the stop claw portion, and is fixed by a screw. The restriction on design is reduced on the appearance for covering the lens barrel unit of the camera, and a camera exterior portion can be made of metal.
Abstract:
Methods for calibrating a photocontrol device having at least one flexible mounting leg mounting the photosensor to a circuit board and being electrically coupled to activate a switching device and calibrated photocontrol devices are provided. A photocontrol device is positioned proximate a light source. An aperture is positioned between the photosensor and the light source and an angle between the at least one flexible mounting leg and the circuit board is adjusted to calibrate a sensitivity of the photocontrol device to light from the light source passing through the aperture.
Abstract:
A portable message sign having a housing and a front surface angled with respect to a rear surface and an array of light emitting devices (such as LEDs) being angled so that the LEDs are parallel to the horizon. The LEDs are mounted at an angle to a printed circuit board (PCB), which is mounted between the front and rear surfaces. In one embodiment, the pins of the LEDs are of different lengths so that when mounted to the PCB the lens of the LED directs light at an angle with respect to the PCB. In another embodiment, a strip of hard material is laid down next to the holes in the PCB that through mount LEDs are inserted, which cause the LED to mount at an angle.