Abstract:
An instrumentation amplifier includes first and second resistors for gain setting. The operational amplifiers within the instrumentation amplifier include selectively enabled current drive sources coupled to the amplifier output. The first and second resistors have variable resistances. A control circuit is configured to select the variable resistances of the first and second resistors to implement a fixed gain for the instrumentation amplifier and further selectively enable the current drive sources. The control circuit receives an indication of a downstream programmable gain (for example, from a downstream programmable gain amplifier). The variable resistances of the first and second resistors are selected to be scaled inversely with respect to the downstream programmable gain and the current drive sources are enabled proportionately with respect to the downstream programmable gain.
Abstract:
An integrated circuit transistor is formed on a substrate. A trench in the substrate is at least partially filed with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region in the substrate which is in electrical connection with the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate may be of the silicon on insulator (SOI) or bulk type. The buried source (or drain) contact makes electrical connection to a side of the source (or drain) region using a junction provided at a same level of the substrate as the source (or drain) and channel regions.
Abstract:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate. At least one dielectric layer is formed adjacent an end portion of the semiconductor fins and within the space between adjacent semiconductor fins. A pair of sidewall spacers is formed adjacent outermost semiconductor fins at the end portion of the semiconductor fins. The at least one dielectric layer and end portion of the semiconductor fins between the pair of sidewall spacers are removed. Source/drain regions are formed between the pair of sidewall spacers.
Abstract:
A semiconductor device may include an IC, and lead frame contact areas adjacent the IC. Each lead frame contact area may have a lead opening. The semiconductor device may include bond wires, each bond wire coupling a respective lead frame contact area with the IC. The semiconductor device may include encapsulation material surrounding the IC, the lead frame contact areas, and the bond wires, and leads. Each lead may extend through a respective lead opening and outwardly from the encapsulation material.
Abstract:
Techniques and structures for shaping the source and drain junction profiles of a finFET are described. A fin may be partially recessed at the source and drain regions of the finFET. The partially recessed fin may be further recessed laterally and vertically, such that the laterally recessed portion extends under at least a portion of the finFET's gate structure. Source and drain regions of the finFET may be formed by growing a buffer layer on the etched surfaces of the fin and/or growing a source and drain layer at the source and drain regions of the fin. The lateral recess can improve channel-length uniformity along the height of the fin.
Abstract:
A method for making a semiconductor device may include forming first and second spaced apart semiconductor active regions with an insulating region therebetween, forming at least one sacrificial gate line extending between the first and second spaced apart semiconductor active regions and over the insulating region, and forming sidewall spacers on opposing sides of the at least one sacrificial gate line. The method may further include removing portions of the at least one sacrificial gate line within the sidewall spacers and above the insulating region defining at least one gate line end recess, filling the at least one gate line end recess with a dielectric material, and forming respective replacement gates in place of portions of the at least one sacrificial gate line above the first and second spaced apart semiconductor active regions.
Abstract:
A modulated digital input signal is passed through a conditioning circuit to generate a first input signal. An error amplifier circuit receives the first input signal and a second input signal, and controls the operation of a MOS transistor to generate an output signal that is current modulated. The output signal is sensed to generate a feedback signal. A switching circuit selectively applies the feedback signal as the second input signal in response to a transition of the modulated digital input signal from a first logic state to a second logic state. The switching circuit alternatively selectively applies a fixed reference signal as the second input signal to the error amplifier in response to a transition of the modulated digital input signal from the second logic state to the first logic state.
Abstract:
In an embodiment, a channel estimator includes first, second, and third stages. The first stage is configurable to generate a first observation scalar for a first communication path of a first communication channel, and the second stage is configurable to generate a second observation scalar for a first communication path of a second communication channel. And the third stage is configurable to generate channel-estimation coefficients in response to the first and second observation scalars. For example, such a channel estimator may use a recursive algorithm, such as a Vector State Scalar Observation (VSSO) Kalman algorithm, to estimate the responses of channels over which propagate simultaneous orthogonal-frequency-division-multiplexed (OFDM) signals (e.g., MIMO-OFDM signals) that suffer from inter-carrier interference (ICI) due to Doppler spread. Such a channel estimator may estimate the channel responses more accurately, more efficiently, with a less-complex algorithm, and with less-complex software or circuitry, than conventional channel estimators.
Abstract:
One method disclosed includes, among other things, forming a fin structure comprised of a semiconductor material, a first epi semiconductor material and a second epi semiconductor material, forming a sacrificial gate structure above the fin structure, forming a sidewall spacer adjacent the sacrificial gate structure, performing at least one etching process to remove the portions of the fin structure positioned laterally outside of the sidewall spacer so as to thereby define a fin cavity in the source/drain regions of the device and to expose edges of the fin structure positioned under the sidewall spacer, and performing an epitaxial deposition process to form an epi etch stop layer on the exposed edges of the fin structure positioned under the sidewall spacer and within the fin cavity.
Abstract:
Methods and structures for increasing strain in fully insulated finFETs are described. The finFET structures may be formed on an insulating layer and include source, channel, and drain regions that are insulated all around. During fabrication, the source and drain regions may be formed as suspended structures. A strain-inducing material may be formed around the source and drain regions on four contiguous sides so as to impart strain to the channel region of the finFET.