摘要:
A Schottky Barrier solar cell having at least one of a low work function region and a high work function region provided on the front or back surface of a lightly-doped absorber material, which may be produced in a variety of different geometries. The method of producing the Schottky Barrier solar cells allows for short processing times and the use of low temperatures.
摘要:
Low-temperature in-situ techniques are provided for the removal of oxide from a silicon surface during CMOS epitaxial processing. Oxide is removed from a semiconductor wafer having a silicon surface, by depositing a SiGe layer on the silicon surface; etching the SiGe layer from the silicon surface at a temperature below 700 C (and above, for example, approximately 450 C); and repeating the depositing and etching steps a number of times until a contaminant is substantially removed from the silicon surface. In one variation, the deposited layer comprises a group IV semiconductor material and/or an alloy thereof.
摘要:
A method of producing a photovoltaic device includes providing a stretchable substrate for the photovoltaic device; and stretching the substrate to produce a stretched substrate. The method further includes depositing a structure comprising hydrogenated amorphous silicon onto the stretched substrate; and subjecting the deposited hydrogenated amorphous silicon structure and the stretched substrate to a compressive force to form a compressively strained photovoltaic device.
摘要:
A field effect transistor (FET) has a channel hosted in Ge. The FET has silicon-germanium (SiGe) source and drain formed by selective epitaxy. The SiGe source and drain exert a tensile stress onto the Ge channel. During forming of the SiGe source and drain, an n-type dopant species and a compensating species are being incorporated into the SiGe source and drain. The n-type dopant species and the compensating species are so selected that the size of the SiGe atomic radius is inbetween the dopant atomic radius and the compensating species atomic radius.
摘要:
A germanium-containing layer is provided between a p-doped silicon-containing layer and a transparent conductive material layer of a photovoltaic device. The germanium-containing layer can be a p-doped silicon-germanium alloy layer or a germanium layer. The germanium-containing layer has a greater atomic concentration of germanium than the p-doped silicon-containing layer. The presence of the germanium-containing layer has the effect of reducing the series resistance and increasing the shunt resistance of the photovoltaic device, thereby increasing the fill factor and the efficiency of the photovoltaic device. In case a silicon-germanium alloy layer is employed, the closed circuit current density also increases.
摘要:
A semiconductor device and fabrication method include a strained semiconductor layer having a strain in one axis. A long fin and a short fin are formed in the semiconductor layer such that the long fin has a strained length along the one axis. An n-type transistor is formed on the long fin, and a p-type transistor is formed on the at least one short fin. The strain in the n-type transistor improves performance.
摘要:
The present invention provides a method for removing or reducing the thickness of ultrathin interfacial oxides remaining at Si—Si interfaces after silicon wafer bonding. In particular, the invention provides a method for removing ultrathin interfacial oxides remaining after hydrophilic Si—Si wafer bonding to create bonded Si—Si interfaces having properties comparable to those achieved with hydrophobic bonding. Interfacial oxide layers of order of about 2 to about 3 nm are dissolved away by high temperature annealing, for example, an anneal at 1300°-1330° C. for 1-5 hours. The inventive method is used to best advantage when the Si surfaces at the bonded interface have different surface orientations, for example, when a Si surface having a (100) orientation is bonded to a Si surface having a (110) orientation. In a more general aspect of the invention, the similar annealing processes may be used to remove undesired material disposed at a bonded interface of two silicon-containing semiconductor materials. The two silicon-containing semiconductor materials may be the same or different in surface crystal orientation, microstructure (single-crystal, polycrystalline, or amorphous), and composition.
摘要:
An SOI substrate has a gettering layer of silicon-germanium (SiGe) with 5-10% Ge, and a thickness of approximately 50-1000 nm. Carbon (C) may be added to SiGe to stabilize the dislocation network. The SOI substrate may be a SIMOX SOI substrate, or a bonded SOI substrate, or a seeded SOI substrate. The gettering layer may disposed under a buried oxide (BOX) layer. The gettering layer may be disposed on a backside of the substrate.
摘要:
A p-doped semiconductor layer of a photovoltaic device is formed employing an inert gas within a carrier gas. The presence of the inert gas within the carrier gas increases free hole density within the p-doped semiconductor layer. This decreases the Schottky barrier at an interface with a transparent conductive material layer, thereby significantly reducing the series resistance of the photovoltaic device. The reduction of the series resistance increases the open-circuit voltage, the fill factor, and the efficiency of the photovoltaic device. This effect is more prominent if the p-doped semiconductor layer is also doped with carbon, and has a band gap greater than 1.85V. The p-doped semiconductor material of the p-doped semiconductor layer can be hydrogenated if the carrier gas includes a mix of H2 and the inert gas.
摘要:
A method of forming a strained semiconductor-on-insulator (SSOI) substrate that does not include wafer bonding is provided. In this disclosure a relaxed and doped silicon layer is formed on an upper surface of a silicon-on-insulator (SOI) substrate. In one embodiment, the dopant within the relaxed and doped silicon layer has an atomic size that is smaller than the atomic size of silicon and, as such, the in-plane lattice parameter of the relaxed and doped silicon layer is smaller than the in-plane lattice parameter of the underlying SOI layer. In another embodiment, the dopant within the relaxed and doped silicon layer has an atomic size that is larger than the atomic size of silicon and, as such, the in-plane lattice parameter of the relaxed and doped silicon layer is larger than the in-plane lattice parameter of the underlying SOI layer. After forming the relaxed and doped silicon layer on the SOI substrate, the dopant within the relaxed and doped silicon layer is removed from that layer converting the relaxed and doped silicon layer into a strained (compressively or tensilely) silicon layer that is formed on an upper surface of an SOI substrate.