Abstract:
A tissue ablation apparatus comprises a first elongated delivery device including a lumen and an obturator with a tissue piercing distal end. The obturator is positionable in the lumen of the first elongated delivery device. A second elongated delivery device is positionable in the lumen of the first elongated delivery device. An energy delivery device is positionable in the second elongated delivery device. The energy delivery device includes at least a first and a second RF electrode each with a tissue piercing distal portion. The first and second RF electrodes are positionable in the second elongated delivery device in a compacted state and deployable from the second elongated delivery device with curvature in a deployed state. The first and second RF electrodes exhibit a changing direction of travel when advanced from the second elongated delivery device to a selected tissue site. At least one infusion port is coupled to one of the first elongated delivery device, the second elongated delivery device, the energy delivery device, the first RF electrode or the second RF electrode. An electrode advancement member is coupled to the first and second RF electrodes. The advancement member is configured to advance the RF electrode out of the elongated delivery device.
Abstract:
A method of creating a lesion in tissue with infusion includes providing an apparatus comprising a first elongated delivery device with a lumen, an obturator with a second elongated delivery device and an energy delivery device positional in a lumen of the first elongated delivery device. The energy device includes at least a first and a second RF electrode each with a tissue piercing distal portion, the first and second RF electrodes being deployable from the first elongated delivery device with curvature in a deployed state. The energy delivery device includes an infusion lumen and at least one infusion port. The obturator and second delivery device are introduced to a selected tissue site. The obturator is removed from a lumen of the second delivery device and the first delivery device and energy delivery device are introduced into the lumen of the second delivery device. The first and second RF electrodes are advanced from the first delivery device to at least partially surround a target tissue site. The target tissue site is at least partially infused with an infusion fluid. Energy is delivered from the energy delivery device to the target tissue site and cell necrosis is created at the target tissue site.
Abstract:
A medical probe device comprises a catheter having a stylet guide housing with one or more stylet ports in a side wall thereof and a stylet guide for directing a flexible stylet outward through the stylet port and through intervening tissue at a preselected, adjustable angle to a target tissue. The total catheter assembly includes a stylet guide lumen communicating with the stylet port and a stylet positioned in said stylet guide lumen for longitudinal movement from the port through intervening tissue to a target tissue. The stylet can be an electrical conductor enclosed within a non-conductive layer, the electrical conductor being a radiofrequency electrode. Preferably, the non-conductive layer is a sleeve which is axially moveable on the electrical conductor to expose a selected portion of the electrical conductor surface in the target tissue. The stylet can also be a microwave antenna. The stylet can also be a hollow tube for delivering treatment fluid to the target tissue. It can also include a fiber optic cable for laser treatment. The catheter can include one or more inflatable balloons located adjacent to the stylet port for anchoring the catheter or dilation. Ultrasound transponders and temperature sensors can be attached to the probe end and/or stylet. The stylet guide can define a stylet path from an axial orientation in the catheter through a curved portion to a lateral orientation at the stylet port.
Abstract:
The invention provides a method and system for treatment for body structures, especially internal body structures involving unwanted features or other disorders, that does not require relatively invasive surgery, and is not subject to other drawbacks noted with regard to the known art. A relatively minimally invasive catheter including a contained cooling element is inserted into the body. The distal and proximal end of the catheter are extended or retracted or some combination thereof so as to achieve optimal delivery of treatment. Treatment of the body structures is applied using the electrodes embedded in the cooling element, and the unwanted features or disorders are relatively cured using the applied treatments. In a preferred embodiment, the applied treatments can include application of energy or substances, including application (such as of radio frequency energy, microwave energy, or laser or other electromagnetic energy) or substances (such as collagen or other bulking, plumping, or shaping agents; saline or other energy-receiving electrolytes; astringents or other debulking, reducing, or shaping agents; antibiotics or other bioactive, chemoactive, or radioactive compounds). In a preferred embodiment, more than one applied treatment can be performed, either in conjunction, in parallel, or seriatim, so as to achieve a combined effect more substantial than any one individual such applied treatment.
Abstract:
A method of treating a sphincter provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. Bioelectric activity causing a relaxation of the sphincter is detected and energy is delivered from either the mapping electrode or the treatment electrode to treat the bioelectric activity.
Abstract:
An electrode assembly for use in interventricular cardiac mapping includes one or more elongated splines each of which carries a plurality of spaced apart electrodes thereon. The body of each spline is formed of a plurality of alternating electrically conductive layers and the electrically non-conductive layers. A separate electrically conductive pathway is provided to connect each of the electrodes to a different one of the conductive layers. Each of the layers is electrically connected to an electrical signal processing device so that signals provided by each of the electrodes can be processed.
Abstract:
An ablation apparatus includes an elongated structure. An expandable membrane is positioned at least partially adjacent to an exterior of the elongated structure. The membrane is configured to receive a electrolytic solution and release at least a portion of the electrolytic through a membrane exterior surface. An electromagnetic energy delivery device is coupled to the expandable membrane. The electromagnetic energy delivery device is also configured to be coupled with a power source.
Abstract:
A probe for cardiac diagnosis and/or treatment has a catheter tube. The distal end of the catheter tube carries first and second electrode elements. The probe includes a mechanism for steering the first electrode element relative to the second electrode element so that the user can move the first electrode element into and out of contact with endocardial tissue without disturbing the contact of the second electrode element with endocardial tissue, even through the two electrode elements are carried on a common catheter tube. The distal end can carry a three dimensional structure having an open interior area. One of electrode elements can be steered through the open interior area of the structure. Electrode elements on the exterior of the structure can be used for surface mapping, while the electrode element inside the structure is steered to ablate tissue.
Abstract:
A method and system for treating aneurysms by applying RF energy to collagen. A catheter is disposed near the aneurysm and collagen is exuded into or near the aneurysm. RF energy is applied, using the same catheter or a second catheter, to the collagen, causing the collagen to harden and cover the weak region of the blood vessel wall, and providing a base onto which epithelial cells of the blood vessel may grow. The catheter comprises an electrophysiology catheter, including a ring electrode preferably disposed to deliver between about 5 and about 30 watts of RF energy at a frequency preferably between about 450 and about 600 Megahertz, to apply sufficient energy to cause the collagen to harden while avoiding damage to surrounding tissue.
Abstract:
A method and an apparatus is disclosed for delivering controlled heat to perform ablation to treat the benign prosthetic hypertrophy or hyperplasia (BPH). According to the method and the apparatus, the energy is transferred directly into the tissue mass which is to be treated in such a manner as to provide tissue ablation without damage to surrounding tissues. Automatic shut-off occurs when any one of a number of surrounding areas to include the urethra or surrounding mass or the adjacent organs exceed predetermined safe temperature limits. The constant application of the radio frequency energy over a maintained determined time provides a safe procedure which avoids electrosurgical and other invasive operations while providing fast relief to BPH with a short recovery time. The procedure may be accomplished in a doctor's office without the need for hospitalization or surgery.