Abstract:
The embodiments provide structures and mechanisms for removal of etch byproducts, dielectric films and metal films on and near the substrate bevel edge, and chamber interior to avoid the accumulation of polymer byproduct and deposited films and to improve process yield. In one example, a chamber for wafer bevel edge cleaning is provided. The chamber includes a bottom electrode having a bottom electrode surface for supporting the wafer when present. Also included is a top edge electrode surrounding an insulating plate. The insulator plate is opposing the bottom electrode. The top edge electrode is electrically grounded and has a down-facing L shape. Further included in the chamber is a bottom edge electrode that is electrically grounded and spaced apart from the bottom electrode. The bottom edge electrode is disposed to encircle the bottom electrode. The bottom edge electrode is oriented to oppose the down-facing L shape of the top edge electrode.
Abstract:
A device for cleaning a bevel edge of a semiconductor substrate. The device includes: a lower support having a cylindrical top portion; a lower plasma-exclusion-zone (PEZ) ring surrounding the outer edge of the top portion and adapted to support the substrate; an upper dielectric component opposing the lower support and having a cylindrical bottom portion; an upper PEZ ring surrounding the outer edge of the bottom portion and opposing the lower PEZ ring; and at least one radiofrequency (RF) power source operative to energize process gas into plasma in an annular space defined by the upper and lower PEZ rings, wherein the annular space encloses the bevel edge.
Abstract:
A method for forming etched features in a low-k dielectric layer disposed below the photoresist mask in a plasma processing chamber is provided. Features are etched into the low-k dielectric layer through the photoresist mask. The photoresist mask is stripped, wherein the stripping comprising at least one cycle, wherein each cycle comprises a fluorocarbon stripping phase, comprising flowing a fluorocarbon stripping gas into the plasma processing chamber, forming a plasma from the fluorocarbon stripping gas, and stopping the flow of the fluorocarbon stripping gas into the plasma processing chamber and a reduced fluorocarbon stripping phase, comprising flowing a reduced fluorocarbon stripping gas that has a lower fluorocarbon flow rate than the fluorocarbon stripping gas into the plasma processing chamber, forming the plasma from the reduced fluorocarbon stripping gas, and stopping the flow of the reduced fluorocarbon stripping gas.
Abstract:
A method for etching features in a low-k dielectric layer disposed below an organic mask is provided by an embodiment of the invention. Features are etched into the low-k dielectric layer through the organic mask. A fluorocarbon layer is deposited on the low-k dielectric layer. The fluorocarbon layer is cured. The organic mask is stripped.
Abstract:
A method for adjusting a data set defining a set of process runs, each process run having a set of data corresponding to a set of variables for a wafer processing operation is provided. A model derived from a data set is received. A new data set corresponding to one process run is received. The new data set is projected to the model. An outlier data point produced as a result of the projecting is identified. A variable corresponding to the one outlier data point is identified, the identified variable exhibiting a high contribution. A value for the variable from the new data set is identified. Whether the value for the variable is unimportant is determined. A normalized matrix of data is created, using random data and the variable that was determined to be unimportant from each of the new data set and the data set. The data set is updated with the normalized matrix of data.
Abstract:
A method for generating plasma for removing an edge polymer from a substrate is provided. The method includes providing a powered electrode assembly, which includes a powered electrode, a dielectric layer, and a wire mesh disposed between the powered electrode and the dielectric layer. The method also includes providing a grounded electrode assembly disposed opposite the powered electrode assembly to form a cavity wherein the plasma is generated. The wire mesh is shielded from the plasma by the dielectric layer when the plasma is present in the cavity, which has an outlet at one end for providing the plasma to remove the edge polymer. The method further includes introducing at least one inert gas and at least one process gas into the cavity. The method yet also includes applying an RF field to the cavity using the powered electrode to generate the plasma from the inert gas and process gas.
Abstract:
A plasma processing chamber for processing a substrate to form electronic components thereon is disclosed. The plasma processing chamber includes a plasma-facing component having a plasma-facing surface oriented toward a plasma in the plasma processing chamber during processing of the substrate, the plasma-facing component being electrically isolated from a ground terminal. The plasma processing chamber further includes a grounding arrangement coupled to the plasma-facing component, the grounding arrangement including a first resistance circuit disposed in a first current path between the plasma-facing component and the ground terminal. The grounding arrangement further includes a RF filter arrangement disposed in at least one other current path between the plasma-facing component and the ground terminal, wherein a resistance value of the first resistance circuit is selected to substantially eliminate arcing between the plasma and the plasma-facing component during the processing of the substrate.
Abstract:
Positional relationships are established in a process chamber. An upper electrode is configured with a first surface to support a wafer, and an electrode has a second surface. A linear drive is mounted on the base and a linkage connected between the drive and the upper electrode. Linkage adjustment defines a desired orientation between the surfaces. The linear drive and linkage maintain the desired orientation while the assembly moves the upper electrode with the surfaces moving relative to each other. An annular etching region defined between the electrodes enables etching of a wafer edge exclusion region extending along a top and bottom of the wafer. Removable etch defining rings are configured to define unique lengths along each of the top and bottom of the wafer to be etched. Positional relationships of the surfaces enable limiting the etching to those unique lengths of the exclusion region.
Abstract:
The embodiments provide apparatus and methods for removal of etch byproducts, dielectric films and metal films near the substrate bevel edge, and chamber interior to avoid the accumulation of polymer byproduct and deposited films and to improve process yield. In an exemplary embodiment, a plasma processing chamber configured to clean a bevel edge of a substrate is provided. The plasma processing chamber includes a substrate support configured to receive the substrate. The plasma processing chamber also includes a bottom edge electrode surrounding the substrate support. The bottom edge electrode and the substrate support are electrically isolated from one another by a bottom dielectric ring. A surface of the bottom edge electrode facing the substrate is covered by a bottom thin dielectric layer. The plasma processing chamber further includes a top edge electrode surrounding a top insulator plate opposing the substrate support. The top edge electrode is electrically grounded. A surface of the top edge electrode facing the substrate is covered by a top thin dielectric layer. The top edge electrode and the bottom edge electrode oppose one another and are configured to generate a cleaning plasma to clean the bevel edge of the substrate.
Abstract:
A device for cleaning a bevel edge of a semiconductor substrate. The device includes: a lower support having a cylindrical top portion; a lower plasma-exclusion-zone (PEZ) ring surrounding the outer edge of the top portion and adapted to support the substrate; an upper dielectric component opposing the lower support and having a cylindrical bottom portion; an upper PEZ ring surrounding the outer edge of the bottom portion and opposing the lower PEZ ring; and at least one radiofrequency (RF) power source operative to energize process gas into plasma in an annular space defined by the upper and lower PEZ rings, wherein the annular space encloses the bevel edge.