Abstract:
An exemplary structure for a gate structure of a field effect transistor comprises a gate electrode; a gate insulator under the gate electrode having footing regions on opposing sides of the gate electrode; and a sealing layer on sidewalls of the gate structure, wherein a thickness of lower portion of the sealing layer overlying the footing regions is less than a thickness of upper portion of the sealing layer on sidewalls of the gate electrode, whereby the field effect transistor made has almost no recess in the substrate surface.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a gate layer over a substrate, forming a hard mask layer over a gate layer, forming a first material layer over the hard mask layer, forming a patterned photoresist layer having an opening over the first material layer, etching the first material layer through a cycle including forming a second material layer over the semiconductor device and etching the first and second material layers, repeating the cycle until the hard mask layer is exposed by a reduced opening, the reduced opening formed in a last cycle, etching the hard mask layer beneath the second opening to expose the gate layer, and patterning the gate layer using the hard mask layer. An etching selectivity of the first and second material layers is smaller than an etching selectivity of the second material layer and the photoresist layer.
Abstract:
Provided is a method of semiconductor fabrication including process steps allowing for defining and/or modifying a gate structure height during the fabrication process. The gate structure height may be modified (e.g., decreased) at one or more stages during the fabrication by etching a portion of a polysilicon layer included in the gate structure. The method includes forming a coating layer on the substrate and overlying the gate structure. The coating layer is etched back to expose a portion of the gate structure. The gate structure (e.g., polysilicon) is etched back to decrease the height of the gate structure.
Abstract:
An integrated circuit chip includes a buffer layer, an underlying layer, a dielectric layer, a hole, and barrier layer. The buffer layer is over the underlying layer. The dielectric layer is over the buffer layer. The hole is formed in and extending through the dielectric layer and the buffer layer, and opens to the underlying layer. The hole includes a buffer layer portion at the buffer layer and a dielectric layer portion at the dielectric layer. At least part of the buffer layer portion of the hole has a larger cross-section area than a smallest cross-section area of the dielectric layer portion of the hole. The conformal barrier layer covers surfaces of the dielectric layer and the buffer layer in the hole. The hole is a via hole or a contact hole that is later filled with a conductive material to form a conductive via or a conductive contact.
Abstract:
A method for forming a hard mask for gate electrode patterning in a semiconductor device is disclosed. The method includes providing a polysilicon layer to be etched and forming over the polysilicon layer, a nitride hardmask with a relatively high etch rate to hydrofluoric acid, as compared to the etch rate of silicon oxide. The polysilicon can then be patterned using the hardmask and the hardmask can be removed using hydrofluoric acid.
Abstract:
A method of etching multi-layer films, the method including: (1) etching a plurality of layers according to etching parameters, (2) determining a plurality of optical characteristics each associated with one of the plurality of layers and determined during the etching of the associated one of the plurality of layers, and (3) determining dynamic etch progressions each based on one of the plurality of optical characteristics that is associated with a particular one of the plurality of layers undergoing the etching.
Abstract:
A method for cleaning semiconductor substrates includes a DI water clean operation that uses a spin speed no greater than 350 rpm. The cleaning method may include additional cleaning operations such as an organic clean, an aqueous chemical clean or a DI water/ozone clean. The cleaning method may be used to clean substrates after the conclusion of an etching procedure which exposes a single film between a Cu-containing conductive material and the environment. The spin speed of the DI water clean operation prevents copper corrosion due to breakdown of the film that separates the Cu-containing conductive material from the environment.
Abstract:
A method if provided for improving a photolithographic patterning process in a dual damascene process by forming a resinous plug in a via opening to prevent out diffusion of nitrogen containing species from a low-k IMD layer in subsequent lithographic patterning and RIE etching processes to form a trench opening formed substantially over the via opening.
Abstract:
A method is described for cleaning freshly etched dual damascene via openings and preparing them for copper fill without damage or contamination of exposed organic or other porous low-k insulative layers. The method is entirely dry and does not expose the porous materials to contamination from moisture or solvents. The method is effective for removing all traces of residual polymer deposits from an in-process substrate wafers after via or damascene trench etching. The method employs an in-situ three-step treatment comprising a first step of exposing the electrically biased substrate wafer to a O2/N2 ashing plasma to remove photoresist and polymers, a second step immediately following the first step of remove silicon nitride etch stop layers, and a final step of treating the wafer with H2/N2 to remove copper polymer deposits formed during nitride removal. The H2/N2 plasma is capable of removing the difficult polymer residues which are otherwise only removable by wet stripping procedures. The H2/N2 plasma is not harmful to exposed porous low-k dielectric layers as well as copper metallurgy.
Abstract translation:描述了一种用于通过开口清洁新鲜蚀刻的双镶嵌件的方法,并且它们用于铜填充而不损坏或污染暴露的有机或其它多孔低k绝缘层。 该方法是完全干燥的,并且不会使多孔材料暴露于水分或溶剂的污染物中。 该方法对于在通孔或镶嵌沟槽蚀刻之后从工艺衬底晶片去除残余聚合物沉积物的所有迹线是有效的。 该方法采用原位三步处理,其包括将电偏置的衬底晶片暴露于O 2 / N 2灰分等离子体以去除光致抗蚀剂和聚合物的第一步骤,紧接着在去除氮化硅蚀刻停止层的第一步骤之后的第二步骤 ,以及用H2 / N2处理晶片以除去在氮化物除去期间形成的铜聚合物沉积物的最后步骤。 H 2 / N 2等离子体能够去除困难的聚合物残余物,否则其仅可通过湿式剥离方法除去。 H2 / N2等离子体对暴露的多孔低k电介质层以及铜冶金无害。
Abstract:
A process for fabricating an aluminum based interconnect structure, using a plasma treated photoresist shape as an etch mask, has been developed. The process features treating a photoresist shape, to be used as an etch mask during RIE patterning procedures, in a nitrogen containing plasma. The plasma nitrogen treated photoresist shape is eroded at a decreased rate, when compared to counterpart non-treated photoresist shapes, during the RIE procedure used to fabricate the aluminum based interconnect structure. The increased etch rate ratio, between layers used for the interconnect structure, and the plasma treated photoresist shape, allows thinner photoresist shapes to be used, and therefore allows narrower lines and spaces to be achieved.