摘要:
A method for forming a unique, environmentally-friendly micron scale autonomous electrical power source is provided in a configuration that generates renewable energy for use in electronic systems, electronic devices and electronic system components. The configuration includes a first conductor with a facing surface conditioned to have a low work function, a second conductor with a facing surface having a comparatively higher work function, and a dielectric layer, not more than 200 nm thick, sandwiched between the respective facing surfaces of the first conductor and the second conductor. The autonomous electrical power source formed according to the disclosed method is configured to harvest minimal thermal energy from any source in an environment above absolute zero. An autonomous electrical power source component is also provided that includes a plurality of autonomous electrical power source constituent elements electrically connected to one another to increase a power output of the autonomous electrical power source.
摘要:
A unique, environmentally-friendly energy harvesting element is provided for generating autonomous renewable energy, or a renewable energy supplement, in electronic systems, electronic devices and electronic system components. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured in a manner to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. Electric leads are provided to connect the energy harvesting element to a load to power the load with the energy harvesting element. An energy harvesting component is also provided that includes a plurality of energy harvesting elements electrically connected to one another to increase a power output of the electric harvesting component.
摘要:
A method is provided for producing an electrically-powered device and/or component that is embeddable in a solid structural component, and a system, a produced device and/or a produced component is provided. The produced electrically powered device includes an attached autonomous electrical power source in a form of a unique, environmentally-friendly structure configured to transform thermal energy at any temperature above absolute zero to an electric potential without any external stimulus including physical movement or deformation energy. The autonomous electrical power source component provides a mechanism for generating renewable energy as primary power for the electrically-powered device and/or component once an integrated structure including the device and/or component is deployed in an environment that restricts future access to the electrical power source for servicing, recharge, replacement, replenishment or the like.
摘要:
Methods are provided for forming a particular multi-layer micron-sized particle that is substantially transparent, yet that exhibits selectable coloration based on its physical properties. The disclosed physical properties of the particle are controllably selectable refractive indices to provide an opaque-appearing energy transmissive material when pluralities of the particles are suspended in a substantially transparent matrix material. Multiply-layered (up to 30+ constituent layers) particles result in an overall particle diameter of less than 5 microns. The material suspensions render the particles deliverable as aspirated or aerosol compositions onto substrates to form layers that selectively scatter specific wavelengths of electromagnetic energy while allowing remaining wavelengths of the incident energy to pass. The disclosed particles and material compositions uniquely implement optical light scattering techniques in energy (or light) transmissive layers that appear selectively opaque, while allowing 80+% of the energy impinging on the light incident side to pass through the layers.
摘要:
A particularly-formed multi-layer micron-sized particle is provided that is substantially transparent, yet that exhibits selectable coloration based on its physical properties. The disclosed physical properties of the particle are controllably selectable refractive indices to provide an opaque-appearing energy transmissive material when pluralities of the particles are suspended in a substantially transparent matrix material. Multiply-layered (up to 30+ constituent layers) particles result in an overall particle diameter of less than 5 microns. The material suspensions render the particles deliverable as aspirated or aerosol compositions onto substrates to form layers that selectively scatter specific wavelengths of electromagnetic energy while allowing remaining wavelengths of the incident energy to pass. The disclosed particles and material compositions uniquely implement optical light scattering techniques in energy (or light) transmissive layers that appear selectively opaque, while allowing 80+% of the energy impinging on the light incident side to pass through the layers.
摘要:
A system and method are provided for forming energy filter layers or shutter components, including energy/light directing/scattering layers that are actively electrically switchable. The energy filters or shutter components are operable between at least a first mode in which the layers, and thus the presentation of the shutter components, appear substantially transparent when viewed from an energy/light incident side, and a second mode in which the layers, and thus the presentation of the energy filters or shutter components, appear opaque to the incident energy impinging on the energy incident side. The differing modes are selectable by electrically energizing, differentially energizing and/or de-energizing electric fields in a vicinity of the energy scattering layers, including electric fields generated between a pair of transparent electrodes sandwiching an energy scattering layer. Refractive indices of transparent particles, and the transparent matrices in which the particles are fixed, are tunable according to the applied electric fields.
摘要:
A system and method are provided for forming energy filter layers or shutter components, including energy/light directing/scattering layers that are actively electrically switchable. The energy filters or shutter components are operable between at least a first mode in which the layers, and thus the presentation of the shutter components, appear substantially transparent when viewed from an energy/light incident side, and a second mode in which the layers, and thus the presentation of the energy filters or shutter components, appear opaque to the incident energy impinging on the energy incident side. The differing modes are selectable by electrically energizing, differentially energizing and/or de-energizing electric fields in a vicinity of the energy scattering layers, including electric fields generated between a pair of transparent electrodes sandwiching an energy scattering layer. Refractive indices of transparent particles, and the transparent matrices in which the particles are fixed, are tunable according to the applied electric fields.
摘要:
Methods are provided for forming a particular multi-layer micron-sized particle that is substantially transparent, yet that exhibits selectable coloration based on its physical properties. The disclosed physical properties of the particle are controllably selectable refractive indices to provide an opaque-appearing energy transmissive material when pluralities of the particles are suspended in a substantially transparent matrix material. Multiple-layered (up to 30+ constituent layers) particles result in an overall particle diameter of less than 5 microns. The material suspensions render the particles deliverable as aspirated or aerosol compositions onto substrates to form layers that selectively scatter specific wavelengths of electromagnetic energy while allowing remaining wavelengths of the incident energy to pass. The disclosed particles and material compositions uniquely implement optical light scattering techniques in energy (or light) transmissive layers that appear selectively opaque, while allowing 80+ % of the energy impinging on the light incident side to pass through the layers.
摘要:
A method is provided that integrates an autonomous energy harvesting capacity in vehicles in an aesthetically neutral manner. A unique set of structural features combine to implement a hidden energy harvesting system on a surface of the vehicle to provide electrical power to the vehicle, and/or to electrically-powered devices in the vehicle. Color-matched, image-matched and/or texture-matched optical layers are formed over energy harvesting components, including photovoltaic energy collecting components. Optical layers are tuned to scatter selectable wavelengths of electromagnetic energy back in an incident direction while allowing remaining wavelengths of electromagnetic energy to pass through the layers to the energy collecting components below. The layers uniquely implement optical light scattering techniques to make the layers appear opaque when observed from a light incident side, while allowing at least 50%, and as much as 80+%, of the energy impinging on the energy or incident side to pass through the layer.
摘要:
A unique, environmentally-friendly micron scale autonomous electrical power source is provided for generating renewable energy, or a renewable energy supplement, in electronic systems, electronic devices and electronic system components. The autonomous electrical power source includes a first conductor with a facing surface conditioned to have a low work function, a second conductor with a facing surface having a comparatively higher work function, and a dielectric layer of not more than 200 Angstroms in thickness sandwiched between the respective facing surfaces of the first conductor and the second conductor. The autonomous electrical power source is configured to harvest minimal thermal energy from any source in an environment above absolute zero. An autonomous electrical power source component is also provided that includes a plurality of autonomous electrical power source constituent elements electrically connected to one another to increase a power output of the autonomous electrical power source.