Abstract:
A tandem linear ion trap and time-of-flight mass spectrometer, where the ion trap has a straight central axis orthogonal to the flight path of the mass spectrometer. The ion trap comprises a set of electrodes, (401, 403, 402, 404) at least one of the electrodes has a slit for ejecting ions towards the mass spectrometer; a set of DC voltage supplies (+V, −V, V1, V2) to provide discrete DC levels and a number of fast electronic switches (409) for connecting/disconnecting the DC supplies to at least two of the electrodes; a neutral gas filling the ion trap and a digital controller to provide a switching procedure of ion trapping, manipulation with ions, cooling and including a state at which all ions are ejected from the ion trap towards the mass spectrometer.
Abstract:
A mass spectrometer has a pulsed ion source, a first ion trap (10) for trapping ions generated by the pulsed ion source and for locating trapped ions for subsequent ejection from the first ion trap. A pulse of cooling gas is introduced into the first ion trap (10) at a peak pressure suitable for enabling the first ion trap (10) to trap ions. A turbomolecular pump (17) reduces the pressure of cooling gas before the trapped ions are ejected from the first ion trap (1) towards a second ion trap (20) for analysis. The pulsed ion source has a sample plate (14) which forms an end wall of the first ion trap (10).
Abstract:
A liquid-cooling device includes a heat exchanger defining a cavity therein and a liquid-guiding component received in the cavity. The liquid-guiding component includes a body and a fixing portion extending from the body and fixed to the heat exchanger. A first liquid passage is defined through the body and a second liquid passage is formed between the body and an inner sidewall of the heat exchanger surrounding the cavity. The first liquid passage is in fluid communication with the second liquid passage via a bottom of the cavity. An outlet and an inlet are formed at an end of the liquid-guiding component and in fluid communication with the first and second liquid passages. Liquid flows in the cavity of the heat exchanger via the first liquid passage and has a sufficient contact with the inner sidewall of the heat exchanger.
Abstract:
A method for modifying the refractive index of an optical, polymeric material. The method comprises irradiating select regions of the optical, polymeric material with a focused, visible or near-IR laser having a pulse energy from 0.05 nJ to 1000 nJ. The irradiation results in the formation of refractive optical structures, characterized by a change in refractive index, exhibit little or no scattering loss, and exhibit no significant differences in the Raman spectrum with respect to the non-irradiated optical, polymeric material. The method can be used to modify the refractive index of an intraocular lens following the surgical implantation of the intraocular lens in a human eye. The invention is also directed to an optical device comprising refractive optical structures, wherein the refractive structures are characterized by a change in refractive index, exhibit little or no scattering loss, and exhibit no significant differences in the Raman spectrum with respect to the non-irradiated optical, polymeric material.
Abstract:
A heat sink includes a heat spreader for absorbing heat from a heat-generating source, a tank covering on the heat spreader and hermetically engaging with the heat spreader, a first wick layer formed on an inner face of the tank, a second wick layer formed on an inner face of the heat spreader, and a supporting member located between the tank and the heat spreader. A chamber is defined between the tank and the heat spreader and contains working fluid therein. The supporting member is arranged in a wave shape and supports the first wick layer and the second wick layer.
Abstract:
One embodiment of the present invention provides systems and techniques for generating a transistor-level description of a subcircuit. A user may want to simulate a subcircuit in a circuit using a transistor-level simulator, and one or more cells in the subcircuit may need to be sensitized so that the cells are in a desired state when the subcircuit is simulated. An embodiment modifies the subcircuit by inserting analog switches in front of the cells that need to be sensitized, so that the analog switches can be used to apply a sensitization sequence to the cells during the transistor-level simulation. The embodiment can then generate a transistor-level description of the modified subcircuit. Next, the transistor-level description of the subcircuit can be stored, thereby enabling the transistor-level simulator to simulate the subcircuit.
Abstract:
The invention “Ion Trap Array (ITA)” pertains generally to the field of ion storage and analysis technologies, and particularly to the ion storing apparatus and mass spectrometry instruments which separate ions by its character such as mass-to-charge ratio. The aim of this invention is providing an apparatus for ion storage and analysis comprising at least two or more rows of parallel placed electrode array wherein each electrode array includes at least two or more parallel bar-shaped electrodes, by applying different phase of alternating current voltages on different bar electrodes to create alternating electric fields inside the space between two parallel electrodes of different rows of electrode arrays, multiple linear ion trapping fields paralleled constructed in the space between the different rows of electrode arrays which are open to adjacent each other without a real barrier. This invention also provides a method for ion storage and analysis involving with the trapping, cooling and mass-selected analyzing of ions by this apparatus mentioned which constructs multiple conjoint linear ion trapping fields in the space between the different rows of electrode arrays
Abstract:
A method for modifying the refractive index of an optical, hydrogel polymeric material. The method comprises irradiating predetermined regions of an optical, polymeric material with a laser to form refractive structures. To facilitate the formation of the refractive structures the optical, hydrogel polymeric material comprises a photosensitizer. The presence of the photosensitizer permits one to set a scan rate to a value that is at least fifty times greater than a scan rate without the photosensitizer in the material, yet provides similar refractive structures in terms of the observed change in refractive index. Alternatively, the photosensitizer in the polymeric material permits one to set an average laser power to a value that is at least two times less than an average laser power without the photosensitizer in the material, yet provide similar refractive structures.
Abstract:
A heat dissipation device includes a heat conductive member, a fin unit coupled to a bottom surface of the heat conductive member and a plurality of LED modules attached to a top surface of the heat conductive member. The heat conductive member consists of a first plate, a second plate parallel to the first plate and a plurality of posts sandwiched between the first and second plates. Peripheries of the first and second plate are in a hermetical conjunction with each other to form a chamber containing a phase-changeable working fluid therein. The first and second plates therein define a plurality of through orifices. The posts each define therein a screwed orifice which is in alignment with corresponding through orifices of the first and second plates respectively and threadedly receives a screw extending through the LED module.
Abstract:
The invention provides human secreted proteins (SECP) and polynucleotides which identify and encode SECP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of SECP.