Abstract:
Provided are a method of analyzing a sequence of a first probe nucleic acid using a substrate on which a second probe nucleic acid is immobilized, and a microarray and a kit for the same.
Abstract:
A method of removing air bubbles from a hybridization solution in a microarray-coverslip assembly c including injecting a solution of magnetic particles between the coverslip and microarray, applying a magnetic field to the microarray-coverslip assembly, moving the magnetic particles and removing air bubbles in the hybridization solution from a hybridization area of the microarray with the magnetic particles, and a microarray kit for the same.
Abstract:
Provided is a method of removing protein while not removing nucleic acids from a biological sample containing protein, the method including: adding a compound of formula I below and a protein nucleating agent to the biological sample containing protein: where at least two of R1, R2, and R3 substituents are substituted or unsubstituted C1-C6 alkyl groups and the other substituent is a hydrogen atom or a substituted or unsubstituted C1-C6 alkyl group, a is an integer of 1 to 6, and b is 0 or 1, wherein b is 0 when a is not 1; treating the resultant mixture with a hydrophobic surface material in order to obtain a protein-free mixture; and separating the protein-free mixture from the hydrophobic surface material to which the protein is bound. By using the method, the protein can be selectively, effectively removed from the biological sample containing the protein while a nucleic acid is maintained in the sample.
Abstract:
A method and apparatus for rapid disruption of cells or viruses using beads and a laser are provided. According to the method and apparatus for rapid disruption of cells or viruses using beads and a laser, cell lysis within 40 seconds is possible, the apparatus can be miniaturized using a laser diode, a DNA purification step can be directly performed after a disruption of cells or viruses, and a solution containing DNA can be transferred to a subsequent step after cell debris and beads to which inhibitors of a subsequent reaction are attached are removed with an electromagnet. In addition, by means of the cell lysis chip, an evaporation problem is solved, vibrations can be efficiently transferred to cells through magnetic beads, a microfluidics problem on a rough surface is solved by hydrophobically treating the inner surface of the chip, and the cell lysis chip can be applied to LOC.
Abstract:
A microarray reaction device includes a fluid container, a reaction chamber, a first channel connected with the fluid container, a second channel connected with the reaction chamber, and a valve. The valve includes a first and second support unit, respectively including a first and second penetration opening unit, extended through a first and second surface thereof. The first and second penetration opening unit is connected to a second end of the first and second channel, respectively. The second support unit includes a third penetration opening unit extended through a second surface thereof. The first and second surfaces contact each other, such that the first support unit and the second support unit are slidably disposed with each other. The microarray reaction device further includes a storing chamber connected with the third penetration opening unit, and a pump connected to the storing chamber and providing pressure to the storing chamber.
Abstract:
A recombinant exosome comprising a fusion protein of a membrane protein and light-emitting protein, and a method of determining an exosome recovery rate by using the recombinant exosome are provided. Use of the method ensures accurate quantification of exosomes in a sample, and thus, improves the efficiency of an exosome-based diagnosis.
Abstract:
A device for a hybridization chamber includes a support including an engagement receiving member which receives a microarray, the engagement receiving member engages with the microarray, a hybridization chamber frame which forms the hybridization chamber when in contact with the microarray, a sealing member disposed on the hybridization frame, the sealing member defines a region of the hybridization chamber and a cover coupled with the support and the hybridization chamber frame, wherein one end of the cover is coupled with the support using a hinge, and an opposite end of the cover includes a compression coupling means.
Abstract:
Provided are a primer set for amplifying target sequence(s) of antibiotic-resistant bacterial species, a probe or probe set specifically hybridizing with target sequence(s) of antibiotic-resistant bacterial species, a microarray immobilized with the probe or probe set, a kit comprising the primer set and a method of detecting at least one antibiotic-resistant bacterial species using the probe or probe set.
Abstract:
Disclosed is a method of separating small RNAs of 200 nucleotides or less from larger RNAs on a solid support, using a kosmotropic salt of different concentrations.
Abstract:
The present invention provides a method of purifying RNA, including contacting a solid support with an acidic solution having a RNA-containing sample and a kosmotropic salt having a concentration of less than 1M, thereby binding the RNA to the solid support. According to the present invention, RNA is purified efficiently due to high RNA yield and low contamination by DNA. The present invention is particularly effective in purifying RNAs of 200 nucleotides or less.