Abstract:
The present invention provides a simple, non-destructive and versatile method that enables layer-by-layer (LbL) assembly to be performed on virtually any substrate. A novel catechol-functionalized polymer which adsorbs to virtually all surfaces and can serve as a platform for LbL assembly in a surface-independent fashion is also provided.
Abstract:
The present invention provides a surface-independent surface-modifying multifunctional biocoating and methods of application thereof. The method comprises contacting at least a portion of a substrate with an alkaline solution comprising a surface-modifying agent (SMA) such as dopamine so as to modify the substrate surface to include at least one reactive moiety. In another version of the invention, a secondary reactive moiety is applied to the SMA-treated substrate to yield a surface-modified substrate having a specific functionality.
Abstract:
The present invention provides nanoparticles including a metallic core having a length along each axis of from 1 to 100 nanometers and a coating disposed on at least part of the surface of the metallic core, wherein the coating comprises polydopamine, along with methods for making and using such nanoparticles. The metallic core may be gold, silver or iron oxide and the polydopamine coating may have other substances bound to it, such as silver, targeting ligands or antibodies, or other therapeutic or imaging contrast agents. The disclosed nanoparticles can be targeted to cells for treating cancer or bacterial infections, and for use in diagnostic imaging.
Abstract:
The present invention provides a method for preventing or repairing damage to a fetal membrane. In one embodiment, the method comprises contacting a fetal membrane with a composition comprising a four-armed catechol-terminated polyethylene glycol (cPEG) and a biocompatible oxidant. In one embodiment, the four-armed cPEG and the biocompatible oxidant are initially contained in separate solutions, and the solutions are mixed to form the composition just prior to or at the same time that the composition contacts the fetal membrane.
Abstract:
The present invention provides novel biocompatible macromonomers, hydrogels, methods of synthesis and methods of use thereof. The biocompatible hydrogels of the present invention are prepared using native chemical ligation (NCL), in which a thioester readily reacts with a N-terminal thiol (cysteine) through transesterification and rearrangement to form an amide bond through a five-member ring intermediate.
Abstract:
An epoxy-silicate nanocomposite is prepared by dispersing an organically modified smectite-type clay in an epoxy resin together with diglycidyl ether of bisphenol-A (DGEBA), and curing in the presence of either nadic methyl anhydride (NMA), and/or benzyldimethyl amine (BDMA), and/or boron trifluoride monoethylamine (BTFA) at 100.degree.-200.degree. C. Molecular dispersion of the layered silicate within the crosslinked epoxy matrix is obtained, with smectite layer spacings of 100 .ANG. or more and good wetting of the silicate surface by the epoxy matrix. The curing reaction involves the functional groups of the alkylammonium ions located in the galleries of the organically modified clay, which participate in the crosslinking reaction and result in direct attachment of the polymer network to the molecularly dispersed silicate layers. The nanocomposite exhibits a broadened T.sub.s at slightly higher temperature than the unmodified epoxy. The dynamic storage modulus of the nanocomposite was considerably higher in the glassy region and very much higher in the rubbery plateau region when compared to such modulus in the unmodified epoxy.
Abstract:
Biocompatible hydrogels made from cross-linked catechol-borate ester polymers are disclosed, along with methods of synthesizing and using such hydrogels. The hydrogels of the present invention are prepared by boronic acid-catechol complexation between catechol-containing macromonomers and boronic acid-containing cross-linkers. The resulting hydrogels are pH-responsive and self-healing, and can be used in a number of different biomedical applications, including in surgical implants, in surgical adhesives, and in drug delivery systems is data provides further evidence of the viability of using the disclosed hydrogels for in vivo in biomedical applications.
Abstract:
A method of making a titanium oxide-containing coating composition comprises attaching an initiator to a pretreated titanium oxide to form an initiator/pretreated titanium oxide complex. The pretreated titanium oxide includes a plurality of pretreated titanium oxide particles which are titanium oxide particles that are pretreated with at least one metal oxide. The initiator/pretreated titanium oxide complex is contacted with a polymerizable unsaturated monomer such that a polymeric encapsulate forms on the initiator/pretreated titanium oxide particles to form polymeric encapsulated titanium oxide particles.