Abstract:
A wireless (e.g., near field or RF) communication device, and methods of manufacturing and using the same are disclosed. The wireless communication device includes a receiver and/or transmitter, a substrate with an antenna thereon, an integrated circuit, and one or more protection lines. The antenna receives and/or transmits or broadcasts a wireless signal. The integrated circuit processes the wireless signal and/or information therefrom, and/or generates the wireless signal and/or information therefor. The integrated circuit has a first set of terminals electrically connected to the antenna. The protection line(s) are on a common or different substrate as the antenna. The protection line(s) sense or determine a continuity state of a package or container on which the communication device is placed or to which the communication device is fixed or adhered, and are electrically connected to a second set of terminals of the integrated circuit different from the first set of terminals.
Abstract:
A smart label including a communication device and a continuity sensor, and methods of manufacturing and using the same, are disclosed. The smart label includes a substrate having a preferential tearing direction, an antenna or display, an integrated circuit, and a sensing line configured to sense or determine a continuity state of a container on which the communication device is placed or to which the communication device is fixed or adhered. The sensing line has at least one section oriented perpendicularly or substantially perpendicularly to the preferential tearing direction of the substrate. The antenna is configured to receive a first wireless signal and/or transmit or broadcast a second wireless signal. The communication device (or integrated circuit) may further include a receiver and/or transmitter, in which case the integrated circuit may be configured to process the first wireless signal and/or information therefrom and/or generate the second wireless signal and/or information therefor. Alternatively, the smart label may include a display (and optionally a battery) instead of the antenna. The display may be configured to display the continuity state of the container.
Abstract:
An electronic device and methods of manufacturing the same are disclosed. One method of manufacturing the electronic device includes forming a first metal layer on a first substrate, forming an electrical device on a second substrate, forming electrical connectors on input and/or output terminals of the electrical device, selectively depositing a second metal on at least part of the first metal layer, and electrically connecting the electrical connectors to the first metal layer by contacting the electrical connectors to the second metal. The second metal is different from the first metal. The second metal improves adhesion and/or electrical connectivity of the first metal layer to the electrical connectors on the electrical device.
Abstract:
Methods, algorithms, processes, circuits, and/or structures for laser patterning suitable for customized RFID designs are disclosed. In one embodiment, a method of laser patterning of an identification device can include the steps of: (i) depositing a patternable resist formulation on a substrate having configurable elements and/or materials thereon; (ii) irradiating the resist formulation with a laser tool sufficiently to change the solubility characteristics of the resist in a developer; and (iii) developing exposed areas of the resist using the developer. Embodiments of the present invention can advantageously provide a relatively low cost and high throughput approach for customized RFID devices.
Abstract:
Printable dopant formulations, methods of making such dopant formulations, and methods of using such dopant formulations are disclosed. The dopant formulations provide a printable dopant ink with a viscosity sufficient to prevent ink spreading when deposited in a pattern on a substrate. Furthermore, an ion exchange purification process provides the dopant formulation with a reduced metal ion concentration, and thus a relatively high purity level. Consequently, the dopant residue remaining on the substrate after curing and/or dopant activation process is relatively uniform, and therefore can be easily removed.
Abstract:
In one aspect, the present invention provides undoped and doped siloxanes, germoxanes, and silagermoxanes that are substantially free from carbon and other undesired contaminants. In a second aspect, the present invention provides methods for making such undoped and doped siloxanes, germoxanes, and silagermoxanes. In still another aspect, the present invention provides compositions comprising undoped and/or doped siloxanes, germoxanes, and silagermoxanes and a solvent, and methods for forming undoped and doped dielectric films from such compositions. Undoped and/or doped siloxane compositions as described advantageously provide undoped and/or doped dielectric precursor inks that may be employed in forming substantially carbon-free undoped and/or doped dielectric films.
Abstract:
An electronic device including a continuity sensor and electrical circuitry configured to detect and report the continuity state of an article, container or product packaging is disclosed. The continuity sensor includes a first substrate with first and second coils thereon, and a second substrate with a third coil thereon. The first coil has an integrated circuit electrically connected thereto. The first substrate is part of, or is attached or secured to a part of the article, container or packaging. The second substrate is another part of, or is attached or secured to another part of the article, container or packaging. One of the article, container or packaging parts is (re)movable with respect to the other part. The first and second coils have one coupling when the article, container or packaging is closed or sealed, and a different coupling when the article, container or packaging is open or unsealed.
Abstract:
A wireless (e.g., near field or RF) communication device, and methods of manufacturing and using the same are disclosed. The wireless communication device includes a receiver and/or transmitter, a substrate with an antenna thereon, an integrated circuit, and one or more protection lines. The antenna receives and/or transmits or broadcasts a wireless signal. The integrated circuit processes the wireless signal and/or information therefrom, and/or generates the wireless signal and/or information therefor. The integrated circuit has a first set of terminals electrically connected to the antenna. The protection line(s) are on a common or different substrate as the antenna. The protection line(s) sense or determine a continuity state of a package or container on which the communication device is placed or to which the communication device is fixed or adhered, and are electrically connected to a second set of terminals of the integrated circuit different from the first set of terminals.
Abstract:
A method of producing a silicon hydride oxide-containing organic solvent (coating solution) is provided with which a silicon hydride oxide coating film can be formed on a substrate. Using the silicon hydride oxide-containing organic solvent makes it unnecessary to place a coating solution in non-oxidizing atmosphere at the time of coating or to heat the substrate after coating because the silicon hydride oxide is formed in the coating solution before it is coated. The method includes blowing an oxygen-containing gas through an organic solvent containing a silicon hydride or a polymer thereof. The silicon hydride oxide may contain a proportion of (residual Si—H groups)/(Si—H groups before oxidation) of 1 to 40 mol %. The silicon hydride can be obtained by reacting a cyclic silane with a hydrogen halide in the presence of an aluminum halide, and reducing the obtained cyclic halosilane.
Abstract:
There is provided a highly conductive and good silicon thin film which is obtained by applying a coating-type polysilane composition prepared by use of a polysilane having a large weight average molecular weight to a substrate, followed by baking. A polysilane having a weight average molecular weight of 5,000 to 8,000. The polysilane may be a polymer of cyclopentasilane. A silicon film obtained by applying a polysilane composition in which the polysilane is dissolved in a solvent to a substrate, and baking the substrate at 100° C. to 425° C. The cyclopentasilane may be polymerized in the presence of a palladium catalyst supported on a polymer. The palladium catalyst supported on a polymer may be a catalyst in which palladium as a catalyst component is immobilized on a functional polystyrene. The palladium may be a palladium compound or a palladium complex. The palladium-immobilized catalyst may be formed by microencapsulating a zero-valent palladium complex or a divalent palladium compound with a functional polystyrene. The zero-valent palladium complex may be a tetrakis(triphenylphosphine)palladium (0) complex.