Abstract:
A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
Abstract:
Methods for the heteroepitaxial growth of smooth, high quality films of N-face GaN film grown by MOCVD are disclosed. Use of a misoriented substrate and possibly nitridizing the substrate allow for the growth of smooth N-face GaN and other Group III nitride films as disclosed herein. The present invention also avoids the typical large (μm sized) hexagonal features which make N-face GaN material unacceptable for device applications. The present invention allows for the growth of smooth, high quality films which makes the development of N-face devices possible.
Abstract:
A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.
Abstract:
A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.
Abstract:
The present invention discloses a method of forming an oxide layer on a layer of germanium including the steps of depositing a layer of aluminum arsenide on the layer of germanium, of exposing the layer of aluminum arsenide to an oxidizing gas mixture so that the aluminum arsenide is oxidized to aluminum oxide, and of controlling excess arsenic released in the aluminum oxide by the exposing step, so as to ensure enhanced electrical properties in the aluminum oxide. The method is used to provide an insulating gate layer for a Ge field effect transistor by forming an oxide layer on Ge and controlling excess arsenic so as to maintain high resistivity in the oxide layer and to avoid the formation of interface surface states which degrade transistor performance. The method is also used to provide complementary metal-insulator-semiconductor logic devices based on the germanium field effect transistor.
Abstract:
A germanium-based field effect transistor has a passivation layer of aluminum oxide below a germanium channel and aluminum oxide gate oxide layer formed over the channel. The aluminum oxide layers are treated to reduce the density of surface state impurities, particularly arsenic released in the oxide layer as a result of forming the oxide layer. The low surface state germanium channel has very low phase noise and is suitable for use as a local oscillator in a heterodyne receiver.