Abstract:
A MEMS (Micro Electro Mechanical System) variable optical attenuator is provided that is capable of optical attenuation over a full range of optical power. The MEMS variable optical attenuator comprises a microelectronic substrate, a MEMS actuator and an optical shutter. The MEMS variable optical attenuator may also comprise a clamping element capable of locking the optical shutter at a desired attenuation position. The variable light attenuator is capable of attenuating optical beams that have their optical axis running parallel and perpendicular to the substrate. Additionally, the MEMS actuator of the present invention may comprise an array of MEMS actuators capable of supplying the optical shutter with greater displacement distances and, thus a fuller range of optical attenuation. In one embodiment of the invention, the MEMS actuator comprises a thermal arched beam actuator. Additionally, the variable optical attenuator of the present invention may be embodied in a thermal bimorph cantilever structure. This alternate embodiment includes a microelectronic substrate and a thermal bimorph cantilever structure having at least two materials of different thermal coefficient of expansion. The thermal bimorph is responsive to thermal activation and moves in the direction of the material having the lower thermal coefficient expansion. Upon activation, the thermal bimorph intercepts the path of the optical beam and provides for the desired level of optical attenuation. The invention also provides for a method of optical attenuation and a method for fabricating an optical attenuator in accordance with the described structures.
Abstract:
An electromechanical device includes a first frame having a first aperture therein, a second frame suspended in the first frame wherein the second frame has a second aperture therein, and a plate suspended in the second aperture. A first pair of beams support the second frame along a first axis relative to the first frame so that the second frame rotates about the first axis. A second pair of beams supports the plate along a second axis relative to the second frame so that the plate rotates about the second axis relative to the frame. The first and second axes preferably intersect at a 90.degree. angle. A first actuator provides mechanical force for rotating the second frame relative to the first frame about the first axis. A second actuator provides mechanical force for rotating the plate relative to the second frame about the second axis. Accordingly, the plate can be independently rotated relative to the first axis and the second axis. Related methods are also disclosed.
Abstract:
A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
Abstract:
A micromechanical memory sensor. The sensor comprises a latch member mechanically latching upon detection of a threshold value of a variable condition and circuitry for detecting such latching. A sensor further includes a resetting mechanism for electrically unlatching the latch member whereby the sensor latched purely mechanically is electrically reset for repeat use.
Abstract:
An electromechanical device includes a first frame having a first aperture therein, a second frame suspended in the first frame wherein the second frame has a second aperture therein, and a plate suspended in the second aperture. A first pair of beams support the second frame along a first axis relative to the first frame so that the second frame rotates about the first axis. A second pair of beams supports the plate along a second axis relative to the second frame so that the plate rotates about the second axis relative to the frame. The first and second axes preferably intersect at a 90.degree. angle. A first actuator provides mechanical force for rotating the second frame relative to the first frame about the first axis. A second actuator provides mechanical force for rotating the plate relative to the second frame about the second axis. Accordingly, the plate can be independently rotated relative to the first axis and the second axis. Related methods are also disclosed.
Abstract:
Microelectromechanical structures (MEMS) are provided that are adapted to controllably move mirrors in response to selective thermal actuation. In one embodiment, the MEMS moveable mirror structure includes a thermally actuated microactuator adapted to controllably move along a predetermined path substantially parallel to the first major surface of an underlying microelectronic substrate. A mirror is adapted to move accordingly with the microactuator between a non-actuated and an actuated position. In all positions, the mirror has a mirrored surface disposed out of plane relative to the first major surface of the microelectronic substrate. The microactuator provided herein can include various thermal arched beam actuators, thermally actuated composite beam actuators, arrayed actuators, and combinations thereof. The MEMS moveable mirror structure can also include a mechanical latch and/or an electrostatic latch for controllably clamping the mirror in position. A MEMS moveable mirror array is also provided which permits individualized control of each individual MEMS moveable mirror structure within the array. The MEMS moveable mirror structures and the associated arrays can be used in a variety of applications including applications involving the controlled redirection of electromagnetic radiation. Accordingly, a method of redirecting electromagnetic radiation is provided. A method of fabricating MEMS moveable mirror structures is further provided.
Abstract:
A microelectromechanical (MEMS) device is provided that includes a microelectronic substrate and a thermally actuated microactuator and associated components disposed on the substrate and formed as a unitary structure from a single crystalline material, wherein the associated components are actuated by the microactuator upon thermal actuation thereof. For example, the MEMS device may be a valve. As such, the valve may include at least one valve plate that is controllably brought into engagement with at least one valve opening in the microelectronic substrate by selective actuation of the microactuator. While the MEMS device can include various microactuators, the microactuator advantageously includes a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween. By heating the at least one arched beam of the microactuator, the arched beams will further arch such that the microactuator moves between a closed position in which the valve plate sealingly engages the valve opening and an open position in which the valve plate is at least partly disengaged from and does not seal the valve opening.
Abstract:
A MEMS thermal actuator device is provided that is capable of providing linear displacement in a plane generally parallel to the surface of a substrate. Additionally, the MEMS thermal actuator may provide for a self-contained heating mechanism that allows for the thermal actuator to be actuated using lower power consumption and lower operating temperatures. The MEMS thermal actuator includes a microelectronic substrate having a first surface and at least one anchor structure affixed to the first surface. A composite beam extends from the anchor(s) and overlies the first surface of the substrate. The composite beam is adapted for thermal actuation, such that it will controllably deflect along a predetermined path that extends substantially parallel to the first surface of the microelectronic substrate.
Abstract:
A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
Abstract:
A microelectromechanical (MEMS) device is provided that includes a microelectronic substrate, a microactuator disposed on the substrate and formed of a single crystalline material, and at least one metallic structure disposed on the substrate adjacent the microactuator While the MEMS device can include various microactuators, one embodiment of the microactuator is a thermally actuated microactuator that may include a pair of spaced apart supports disposed on the substrate and at least one arched beam extending therebetween. Thus, on actuation, the microactuator moves between a first position in which the microactuator is spaced apart from the at least one metallic structure to a second position in which the microactuator operably engages the at least one metallic structure.