Abstract:
A semiconductor structure including a highly strained selective epitaxial top layer suitable for use in fabricating a strained channel transistor. The top layer is deposited on the uppermost of a series of one or more lower layers. The lattice of each layer is mismatched with the lattice of its subjacent layer by an amount not less than the lattice mismatch between the lowest layer of the series and a substrate on which it resides. A trench is formed in the uppermost series layer. The trench has rounded corners so that a dielectric material filling the trench conforms to the round corners. The rounded corners are produced by heating the uppermost series layer after trench formation.
Abstract:
A semiconductor structure includes a semiconductor substrate; a gate dielectric over the semiconductor substrate; a gate electrode over the gate dielectric; a source/drain region adjacent the gate dielectric; a silicide region on the source/drain region; a metal layer on top of, and physical contacting, the silicide region; an inter-layer dielectric (ILD) over the metal layer; and a contact opening in the ILD. The metal layer is exposed through the contact opening. The metal layer further extends under the ILD. The semiconductor structure further includes a contact in the contact opening.
Abstract:
A magnetic oscillation metric controller with return design comprised of a scrolling wheel mechanism, a dancer, a permanent magnet, a Hall sensor and a return structure to drive the permanent magnet by oscillation of the scrolling wheel mechanism to generate signals of changed magnetic fields resulted from displacement for achieving metric control purpose; and the return structure including an elastic stick to facilitate return after lateral or longitudinal displacement.
Abstract:
A semiconductor device having at least one transistor covered by an ultra-stressor layer, and method for fabricating such a device. In an NMOS device, the ultra-stressor layer includes a tensile stress film over the source and drain regions, and a compressive stress film over the poly region. In a PMOS device, the ultra-stressor layer includes a compressive stress film over the source and drain regions and a tensile stress film over the poly region. In a preferred embodiment, the semiconductor device includes a PMOS transistor and an NMOS transistor forming a CMOS device and covered with an ultra stressor layer.
Abstract:
A high performance semiconductor device and the method for making same is disclosed with an improved drive current. The semiconductor device has source and drain regions built on an active region, a length of the device being different than a width thereof. One or more isolation regions are fabricated surrounding the active region, the isolation regions are then filled with an predetermined isolation material whose volume shrinkage exceeds 0.5% after an anneal process. A gate electrode is formed over the active region, and one or more dielectric spacers are made next to the gate electrode. Then, a contact etch stopper layer is put over the device, wherein the isolation regions, spacers and contact etch layer contribute to modulating a net strain imposed on the active region so as to improve the drive current.
Abstract:
A method of fabricating an integrated circuit is provided. A first gate dielectric portion is formed on a substrate in a first transistor region. The first gate dielectric portion includes a first high-permittivity dielectric material. The first gate dielectric portion has a first equivalent silicon oxide thickness. A second gate dielectric portion is formed on the substrate in a second transistor region. The second gate dielectric portion includes the first high-permittivity dielectric material. The second gate dielectric portion has a second equivalent silicon oxide thickness. The second equivalent silicon oxide thickness is different than the first equivalent silicon oxide thickness.
Abstract:
An exemplary surface mounted electronic component has block body including a bottom soldering surface, a top surface and a peripheral wall having a first peripheral wall portion and a second peripheral wall portion. The bottom soldering surface defines a first soldering area and a second soldering area. The first peripheral wall portion adjoins the first soldering area and has at least a first cutout defined between the first peripheral wall portion and the first soldering area. The second peripheral wall portion adjoins the second soldering area and has at least a second cutout defined between the second peripheral wall portion and the second soldering area. When the surface mounted electronic component is soldered, the melting solder can climb up the cutouts of the sidewall due to capillary effect and ‘chimney effect’, thereby avoiding ‘tombstoning’.
Abstract:
An exemplary surface mounted electronic component has block body including a bottom soldering surface, a top surface and a peripheral wall having a first peripheral wall portion and a second peripheral wall portion. The bottom soldering surface defines a first soldering area and a second soldering area. The first peripheral wall portion adjoins the first soldering area and has at least a first cutout defined between the first peripheral wall portion and the first soldering area. The second peripheral wall portion adjoins the second soldering area and has at least a second cutout defined between the second peripheral wall portion and the second soldering area. When the surface mounted electronic component is soldered, the melting solder can climb up the cutouts of the sidewall due to capillary effect and ‘chimney effect’, thereby avoiding ‘tombstoning’.
Abstract:
An exemplary method for forming stacked via-holes in a multilayer printed circuit board includes the steps of: providing a base circuit board; attaching a first copper-coated-substrate having a first substrate and a first copper layer thereon and a second copper-coated-substrate having a second substrate and a second copper layer thereon onto the base circuit board in a manner such that; forming at least one first window in the second copper layer, making at least one first hole in the second substrate through the at least one first window, forming at least one second window in the first copper layer through the at least one first hole, and making at least one second hole in the first substrate though the at least one second window, thus forming at least one part-finished stacked via-hole; and plating the at least one part-finished stacked via-hole thereby forming at least one stacked via-hole.
Abstract:
In accordance with a preferred embodiment of the present invention, a silicon-on-insulator (SOI) chip includes a silicon layer of a predetermined thickness overlying an insulator layer. A multiple-gate fully-depleted SOI MOSFET including a strained channel region is formed on a first portion of the silicon layer. A planar SOI MOSFET including a strained channel region formed on another portion of the silicon layer. For example, the planar SOI MOSFET can be a planar fully-depleted SOI (FD-SOI) MOSFET or the planar SOI MOSFET can be a planar partially-depleted SOI (PD-SOI) MOSFET.