Abstract:
A system and method for controlling curl in multi-layer webs. The method can include providing a coated web, curing the coating to form a multi-layer web, and stretching the web during curing of the coating. Some coatings shrink at least partially when cured such that curing the coating induces a strain in the multi-layer web. Stretching the web occurs during curing to induce an opposing strain that at least partially counteracts the strain induced by curing to form a multi-layer web having a desired curvature. The system can include a curing section configured to cure the coating, and can further include a web stretching section, which can be located proximate the curing section and can be substantially coincident with the curing section, such that the web is stretched while the coating is cured.
Abstract:
A system and method for controlling curl in multi-layer webs. The method can include providing a coated web, curing the coating to form a multi-layer web, and stretching the web during curing of the coating. Some coatings shrink at least partially when cured such that curing the coating induces a strain in the multi-layer web. Stretching the web occurs during curing to induce an opposing strain that at least partially counteracts the strain induced by curing to form a multi-layer web having a desired curvature. The system can include a curing section configured to cure the coating, and can further include a web stretching section, which can be located proximate the curing section and can be substantially coincident with the curing section, such that the web is stretched while the coating is cured.
Abstract:
Methods and apparatuses for applying coatings on a baggy web are provided. A Mayer rod and a back-up roll engage with each other to form a nip. The back-up roll has a deformable inner layer with a surface thereof covered by a deformable outer layer. The Mayer rod and the flexible web at a contacting area are impressed into the back-up roll with a machine-direction nip width W and a nip engagement depth D, which enables formation of a coating having a substantially uniform thickness.
Abstract:
Injection molding parts onto a carrier web located between mold halves, each mold half having a cavity, resulting in molded articles having parts on both sides of the carrier web. Polymer flow into the cavities is assisted by application of ultrasonic energy to the mold. After the molding operation, mold halves are separated, and the carrier web is advanced, or indexed, to a next position for another molding sequence. Articles produced include lenses with part of the carrier web between lens halves, and a carrier web bearing an array of molded parts.
Abstract:
Injection molding parts onto a carrier web located between mold halves, each mold half having a cavity, resulting in molded articles having parts on both sides of the carrier web. Polymer flow into the cavities is assisted by application of ultrasonic energy to the mold. After the molding operation, mold halves are separated, and the carrier web is advanced, or indexed, to a next position for another molding sequence. Articles produced include lenses with part of the carrier web between lens halves, and a carrier web bearing an array of molded parts.
Abstract:
An apparatus for casting a patterned surface on both sides of an opaque web. The apparatus includes a first patterned roll, a second pattered roll, and a means for rotating the first and second patterned rolls such that their patterns are transferred to opposite sides of the opaque web while it is in continuous motion. During this process, their patterns are maintained in continuous registration to within at least 100 micrometers.
Abstract:
Methods and apparatuses for roll coating are provided. The roll coating system (100) includes a coating roll (110) having a deformable inner layer (12) with a surface thereof covered by a deformable outer layer (14), the inner layer being softer than the outer layer. A substrate (3) is conveyed to the nip (12) between the coating roll and a back-up roll (120). A metered coating material is transferred from the coating roll to a patterned surface structure (40) of the substrate at the nip to form a conformal coating on the patterned structure of the substrate.
Abstract:
Methods and apparatuses for applying coatings on a moving web are provided. A coating die and a back-up roll engage with each other. The back-up roll includes a shell rotatably supported by a pressurized air layer. When a coating material is dispensed from the coating die onto the web to form a liquid coating, the pressure of the air layer is controlled such that the shell translates in space to balance forces from the air layer and the coating bead, while the web is being translated to drive the shell.
Abstract:
Methods and apparatuses for applying coatings on a moving web are provided. A coating die and a back-up roll engage with each other. The back-up roll includes a shell rotatably supported by a pressurized air layer. When a coating material is dispensed from the coating die onto the web to form a liquid coating, the pressure of the air layer is controlled such that the shell translates in space to balance forces from the air layer and the coating bead, while the web is being translated to drive the shell.
Abstract:
A printing system (200) including a printing roll (220) is provided. The printing roll (220) includes an elastically deformable and compressible inner layer (224) and a thin outer shell (222) to cover the inner layer (224). The thin outer shell (222) includes a pattern of raised print features (223) to receive ink material thereon. The inner layer (224) is softer and thicker than the thin outer shell (222), and optionally, the thin outer shell (222) is removable from the inner layer (224). The inner layer (224) of the printing roll (220) has a thickness, a compression force deflection value and an elastically-deformable compressibility such that the raised print features (223) of the printing roll (220) do not slide or deform with respect to the printed web (2) in an amount to generate a substantially visible dot gain.