Abstract:
A method for forming a layer constituted by repeated stacked layers includes: forming a first layer and a second layer on a substrate under different deposition conditions to form a stacked layer, wherein the film stresses of the first and second layers are tensile or compressive and opposite to each other, and the wet etch rates of the first and second layers are at least 50 times different from each other; and repeating the above step to form a layer constituted by repeated stacked layers, wherein the deposition conditions for forming at least one stacked layer are different from those for forming another stacked layer.
Abstract:
A UV irradiation apparatus for processing a semiconductor substrate includes: a UV lamp unit; a reaction chamber disposed under the UV lamp unit; a gas ring with nozzles serving as a first electrode between the UV lamp unit and the reaction chamber; a transmission window supported by the gas ring; an RF shield which covers a surface of the transmission window facing the UV lamp unit; a second electrode disposed in the reaction chamber for generating a plasma between the first and second electrodes; and an RF power source for supplying RF power to one of the first or second electrode.
Abstract:
[Problem] A substrate treatment apparatus that can protect an AC power supply connected to a heater is provided. [Means for solving the problem] A substrate treatment apparatus includes a lower electrode formed of a dielectric, a first AC power supply that is connected to a first internal electrode included in the lower electrode and supplies AC power with a first frequency, a heater included in the lower electrode to heat the lower electrode, a filter circuit connected to the heater, and a second AC power supply connected to the heater via the filter circuit and used for the heater, in which the filter circuit includes a parallel circuit that connects a low-pass filter with a cut-off frequency that is lower than the first frequency and a high-pass filter with a cut-off frequency that is higher than the first frequency in parallel.
Abstract:
Examples of a substrate processing apparatus includes a chamber, a susceptor provided in the chamber, a shower head provided above the susceptor, and a flow control ring having a shape to surround the susceptor, the flow control ring having a first top surface and a second top surface that has an annular shape and is provided closer to an inner edge of the flow control ring than the first top surface at a higher level than the first top surface, the second top surface being a sloped surface whose height decreases toward the first top surface.
Abstract:
A substrate treatment apparatus includes a lower electrode, an upper electrode, a first AC power supply that is connected to the upper electrode and supplies AC power at a first frequency, a second AC power supply that is connected to the upper electrode and supplies AC power at a second frequency which is lower than the first frequency, an internal electrode provided in the lower electrode, a filter circuit connected to the internal electrode, and a DC power supply connected to the internal electrode via the filter circuit. The filter circuit includes a first filter circuit that becomes low impedance with respect to AC power at the first frequency compared to AC power at the second frequency, and a second filter circuit that becomes low impedance with respect to AC power at the second frequency compared to AC power at the first frequency.
Abstract:
An anti-slip end-effector for transporting a workpiece, which is configured to be attached to a robotic arm, includes: a workpiece-supporting area for placing a workpiece thereon for transportation; at least one front protrusion disposed at a distal end of the workpiece-supporting area for engaging an edge of the workpiece to restrict movement of the workpiece placed on the workpiece-supporting area beyond the front protrusion; and at least one anti-slip protrusion disposed in the workpiece-supporting area for contacting and supporting the backside of the workpiece, said anti-slip protrusion having a top face having a static friction coefficient of 1.0 or more as measured against the backside of the workpiece, and having a surface roughness of less than 0.4 μm.
Abstract:
An anti-slip end-effector for transporting a workpiece, which is configured to be attached to a robotic arm, includes: a workpiece-supporting area for placing a workpiece thereon for transportation; at least one front protrusion disposed at a distal end of the workpiece-supporting area for engaging an edge of the workpiece to restrict movement of the workpiece placed on the workpiece-supporting area beyond the front protrusion; and at least one anti-slip protrusion disposed in the workpiece-supporting area for contacting and supporting the backside of the workpiece, said anti-slip protrusion having a top face having a static friction coefficient of 1.0 or more as measured against the backside of the workpiece, and having a surface roughness of less than 0.4 μm.