摘要:
For controlling unwanted production of crystal defects from corners of isolated regions in a complete dielectric isolation structure, after at least one trench or groove is provided through a mask of an insulating film in a semiconductor substrate adhered to an insulating film of a base substrate, the mask is side-etched and the insulating film of the base substrate is selectively etched at the same time to expose corners of the semiconductor substrate. The exposed corners of the semiconductor substrate is then subjected to isotropic etching to remove a pointed portion therefrom. Thereafter, side surfaces of the semiconductor substrate exposed within the trench is oxidized to provide an insulating film for dielectric isolation which has rounded corners.
摘要:
A semiconductor device has a semiconductor region, an electrode layer formed over the semiconductor region, and a protection layer formed to cover the semiconductor region and the electrode layer. In the semiconductor device, the protection layer is a semiconductor protection layer. Part of the semiconductive protection layer is formed thin so as to have a low resistance, permitting a corresponding portion of the electrode layer to be connected to an external bonding wire.
摘要:
A semiconductor device includes a plurality of defect layers separated from one another in the semiconductor layer. A distance separating any adjacent ones of the defect layers is kept such that they are prevented from contacting each other and those regions having effect of shortening a carrier lifetime overlap each other.
摘要:
A vertical MOS transistor comprises a semiconductor substrate, a first impurity region defined on the surface of the semiconductor substrate, a second impurity region defined under the first impurity region, the conduction type of the second impurity region being opposite to that of the first impurity region, a trench engraved on the surface of the semiconductor substrate to cut through the first and second impurity regions deeper than at least the bottom of the second impurity region, and a gate electrode disposed in the trench with a gate insulation film interposing between the wall of the trench and the gate electrode. The gate insulation film is thicker on the bottom of the trench and on part of the side walls of the trench continuous to the bottom than on the other parts.
摘要:
A vertical MOS transistor comprises a semiconductor substrate, a first impurity region defined on the surface of the semiconductor substrate, a second impurity region defined under the first impurity region, the conduction type of the second impurity region being opposite to that of the first impurity region, a trench engraved on the surface of the semiconductor substrate to cut through the first and second impurity regions deeper than at least the bottom of the second impurity region, and a gate electrode disposed in the trench with a gate insulation film interposing between the wall of the trench and the gate electrode. THE gate insulation film is thicker on the bottom of the trench and on part of the side walls of the trench continuous to the bottom than on the other parts.
摘要:
The main characteristic feature of the invention is to prevent a leakage current from flowing when a planar type semiconductor device having a high breakdown voltage is reverse-biased. For example, a semiconductive film is formed on the surface of an n-type Si substrate between a second p-type base layer selectively formed on the surface of the Si substrate and a channel stop layer formed to surround the second p-type base layer at a predetermined interval. The dangling bond density of the semiconductive film is set at 1.25.times.1018 cm.sup.-3. With this structure, the discrete level in the band gap approach a continuum, and the time required to populate the trapping level in the semiconductive film with carriers is shortened.
摘要翻译:本发明的主要特征是当具有高击穿电压的平面型半导体器件被反向偏置时,防止漏电流流动。 例如,在n型Si衬底的表面上形成半导体膜,该第二p型基极层选择性地形成在Si衬底表面上的第二p型基极层和形成为围绕第二p型基极层的沟道阻挡层 以预定间隔。 半导体膜的悬挂键密度设定为1.25×10 18 cm -3。 利用这种结构,带隙中的离散水平接近连续体,缩短了用载体填充半导体薄膜中的捕获水平所需的时间。
摘要:
A semiconductor device, and particularly an MOS transistor device, wherein in order to increase a channel region density and to achieve a low resistance of a transistor device there is provided a first gate electrode group having a plurality of gate electrodes formed on a semiconductor substrate to be away from each other at first equal spacings, a second gate electrode group having a plurality of gate electrodes formed on the semiconductor substrate to be away from each other at the first equal spacings, a source contact portion formed away from the first or the second gate electrode group at a second spacing, and source regions for electrically interconnecting the first gate electrode group and the source contact. The source regions are connected to each other at one end of the first gate electrode group, and separated at the other end of the first gate electrode group. In addition, the gate electrodes of the first group are connected each other at the other end. The second spacing is greater than the first spacing.
摘要:
A semiconductor device which comprises a semiconductor substrate, semiconductor pillar regions each having first and second semiconductor pillar portions, the second semiconductor pillar portion being sandwiched by the first semiconductor pillar portions, a base layer formed in the second semiconductor pillar portion, a source diffusion layer formed in the base layer, a gate insulating film formed on a portion of the base layer, a gate electrode formed on the gate insulating film, and isolation regions which isolates the semiconductor pillar regions from each other and are formed in trenches between the semiconductor pillar regions, wherein each of the isolation regions comprises an oxide film formed on an inner surface of the trench and a nitride film formed on the oxide film, the nitride film being filled in the trench, and a film thickness ratio of the oxide film and the nitride film is in a range of 2:1 to 5:1.
摘要:
A semiconductor device includes a diffusion area formed in a semiconductor layer of a first conductive type. The diffusion area comprises first and second impurity diffusion areas of the first and second conductive types, respectively. The diffusion area has a first and second areas which are defined by an impurity concentration of the first and second impurity diffusion areas. A junction between the first and second area is formed in a portion in which the first and second impurity diffusion areas overlap each other. A period of the impurity concentration, in a planar direction of the semiconductor layer, of the first or second area is smaller than the maximum width, in the planar direction of the semiconductor layer, of the first and second impurity diffusion areas constituting the first or second area.
摘要:
A semiconductor device includes a diffusion area formed in a semiconductor layer of a first conductive type. The diffusion area comprises first and second impurity diffusion areas of the first and second conductive types, respectively. The diffusion area has a first and second areas which are defined by an impurity concentration of the first and second impurity diffusion areas. A junction between the first and second area is formed in a portion in which the first and second impurity diffusion areas overlap each other. A period of the impurity concentration, in a planar direction of the semiconductor layer, of the first or second area is smaller than the maximum width, in the planar direction of the semiconductor layer, of the first and second impurity diffusion areas constituting the first or second area.