Abstract:
An electronic device. The electronic device may include a battery, and a charging system in electronic communication with the battery. The charging system may be configured to charge at least a partially-depleted battery to a threshold charge value, discontinue the charging in response to the battery being charged to the threshold charge value, and monitor the function of the electronic device to detect at least one of an anticipated event, and an unanticipated event of the electronic device. Additionally the charging system may be configured to recharge the battery in response to detecting one of: the anticipated event occurring a predetermined time subsequent to the recharging of the battery, or the unanticipated event occurring immediately before the recharging of the battery.
Abstract:
Provided in one embodiment is a method of forming a connection mechanism in or on a bulk-solidifying amorphous alloy by casting in or on, or forming with the bulk-solidifying amorphous alloy, a machinable metal. The connection mechanism can be formed by machining the machinable metal.
Abstract:
A cold worked stainless steel bezel for a portable electronic device. The bezel is secured flush to a housing to form part of the case of the portable electronic device. A brace that includes a slot for receiving a wall extending from the bezel is fixed to the housing. When the bezel engages the housing, the wall of the bezel is inserted in the slot of the brace and releasably held by a spring that engages both the brace and the wall. The bezel can be released by disengaging the spring. The bezel is hard and resistant to impacts. Cold worked steel also facilitates manufacturing within design constraints and tolerances, and requires very little machining after manufacturing to comply with those constraints. the portable electronic device may include a personal media device, a mobile telephone, or any other suitable device or combination thereof.
Abstract:
Methods and apparatus for forming a housing, such as for an electronic device, from multi-layer materials are disclosed. The multi-layer materials include at least two layers. Typically, one or more of the layers are metal. However, different layers of the multi-layer materials can be different metals. In one embodiment, an inner layer of the multi-layer materials can be provided with or form internal features that can be for attaching parts or components to the multi-layer materials. In another embodiment, processing of an inner layer of the multi-layer materials can facilitate part formation with increased curvature and/or internal part clearance. In another embodiment, the multi-layer materials can include an intermediate layer that facilitates creation of internal features that can be for attaching parts or components to the multi-layer materials. In still another embodiment, the multi-layer materials can provide a protective layer that serves to protect an outer surface of the housing during manufacturing and/or assembly.
Abstract:
An electronic device for providing tactile feedback is provided. The electronic device may provide tactile feedback using any suitable approach, including for example vibration, heat, electrical, visual, or any other type of feedback. The electronic device may provide tactile feedback in response to detecting any particular status of the electronic device, receiving any particular input, or detecting any suitable communication received by the electronic device. For example, the electronic device may provide tactile feedback in response to identifying the current network of the device, the status of a particular electronic device component, or any other electronic device status; in response to receiving a particular type of communication or in response to receiving a communication from a particular contact; or in response to receiving a particular user input or to detecting a user's finger on a particular portion of the electronic device.
Abstract:
A computing device is disclosed. The computing device includes a shock mount assembly that is configured to provide impact absorption to sensitive components such as a display and an optical disk drive. The computing device also includes an enclosureless optical disk drive that is housed by an enclosure and other structures of the computing device. The computing device further includes a heat transfer system that removes heat from a heat producing element of the computing device. The heat transfer system is configured to thermally couple the heat producing element to a structural member of the computing device so as to sink heat through the structural member, which generally has a large surface area for dissipating the heat.
Abstract:
An electronic device for providing tactile feedback is provided. The electronic device may provide tactile feedback using any suitable approach, including for example vibration, heat, electrical, visual, or any other type of feedback. The electronic device may provide tactile feedback in response to detecting any particular status of the electronic device, receiving any particular input, or detecting any suitable communication received by the electronic device. For example, the electronic device may provide tactile feedback in response to identifying the current network of the device, the status of a particular electronic device component, or any other electronic device status; in response to receiving a particular type of communication or in response to receiving a communication from a particular contact; or in response to receiving a particular user input or to detecting a user's finger on a particular portion of the electronic device.
Abstract:
An electronic device may include a battery, and a charging system in electronic communication with the battery. The charging system may be configured to initiate a charging of the batter when the battery is in a partially-depleted state. The charging system may then discontinue the charging in response to the battery being charged to the threshold charge value, and may monitor the function of the electronic device to predict an event of the electronic device. After the event is predicted, the charging system may determine when to initiate a recharging process, so that the battery is fully charged when the event occurs.
Abstract:
A cold worked stainless steel bezel for a portable electronic device is provided. The bezel is secured flush to a housing to form part of the case of the portable electronic device. A brace that includes a slot for receiving a wall extending from the bezel is fixed to the housing. When the bezel engages the housing, the wall of the bezel is inserted in the slot of the brace and releasably held by a spring that engages both the brace and the wall. The bezel can be released by disengaging the spring, (e.g., using a special tool or a magnetic field). Because the bezel is manufactured from cold worked stainless steel, it is hard and resistant to impacts. Cold worked steel also facilitates manufacturing within design constraints and tolerances, and requires very little machining after manufacturing to comply with those constraints.
Abstract:
A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.