Abstract:
Embodiments described herein generally relate to enable the formation of a metal gate structure with a reduced effective oxide thickness over a similar structure formed via conventional methods. A plasma hydrogenation process followed by a plasma nitridization process, or a single-step plasma hydrogenation and nitridization process, is performed on a metal nitride layer in a film stack, thereby, according to some embodiments, removing oxygen atoms disposed within layers of the film stack and, in some embodiments, adding nitrogen atoms to the layers of the film stack. As a result, an effective oxide thickness of the metal gate structure is reduced with little or no accompanying flatband voltage shift.
Abstract:
Embodiments described herein generally relate to a sequential hydrogenation and nitridization process for reducing interfacial and bulk O atoms in a conductive structure in a semiconductor device. A hydrogenation and plasma nitridization process is performed on a metal nitride layer in a conductive structure prior to deposition of a second metal layer, thereby reducing interfacial oxygen atoms formed on a surface of the metal nitride and oxygen atoms present in the bulk metal layers of the conductive structure. As a result, adhesion of the second metal layer to the metal nitride layer is improved and the electrical resistance of the contact structure is reduced.
Abstract:
Embodiments described herein generally relate to a method and apparatus for plasma treating a process chamber. A substrate having a gate stack formed thereon may be placed in a process chamber, and hydrogen containing plasma may be used to treat the gate stack in order to cure the defects in the gate stack. As the result of hydrogen containing plasma treatment, the gate stack has lower leakage and improved reliability. To protect the process chamber from Hx+ ions and H* radicals generated by the hydrogen containing plasma, the process chamber may be treated with a plasma without the substrate placed therein and prior to the hydrogen containing plasma treatment. In addition, components of the process chamber that are made of a dielectric material may be coated with a ceramic coating including an yttrium containing oxide in order to protect the components from the plasma.
Abstract:
Disclosed are apparatus and methods for processing a substrate. The substrate having a feature with a layer thereon is exposed to an inductively coupled plasma which forms a substantially conformal layer.
Abstract:
Embodiments of the present disclosure generally relate to inductively coupled plasma sources and plasma processing apparatus. In at least one embodiment, plasma source includes a first sidewall and a gas injection insert defining a plasma source interior volume. The gas injection insert includes a peripheral gas injection port, a second sidewall disposed concentric with the first sidewall, and a center gas injection port. The plasma source includes a first induction coil disposed proximate the first sidewall and disposed around the first sidewall. The plasma source includes a first radio frequency power generator coupled with the first induction coil. The plasma source includes a second induction coil disposed proximate the second sidewall and disposed around the second sidewall. The plasma source includes a second radio frequency power generator coupled with the second induction coil.
Abstract:
Embodiments of the present disclosure generally relate to the fabrication of integrated circuits and to apparatus for use within a substrate processing chamber to improve film thickness uniformity. More specifically, the embodiments of the disclosure relate to an edge ring. The edge ring may include an overhang ring.
Abstract:
Embodiments of the present disclosure generally relate to inductively coupled plasma sources, plasma processing apparatus, and independent temperature control of plasma processing. In at least one embodiment, a method includes introducing a process gas into a gas injection channel and generating an inductively coupled plasma within the gas injection channel. The plasma includes at least one radical species selected from oxygen, nitrogen, hydrogen, NH and helium. The method includes delivering the plasma from the plasma source to a process chamber coupled therewith by flowing the plasma through a separation grid between the plasma source and a substrate. The method includes processing the substrate. Processing the substrate includes contacting the plasma including the at least one radical species with a first side of the substrate facing the separation grid and heating the substrate using a plurality of lamps located on a second side of the substrate opposite the separation grid.
Abstract:
Embodiments of the present disclosure generally relate to inductively coupled plasma sources and plasma processing apparatus. In at least one embodiment, plasma source includes a first sidewall and a gas injection insert defining a plasma source interior volume. The gas injection insert includes a peripheral gas injection port, a second sidewall disposed concentric with the first sidewall, and a center gas injection port. The plasma source includes a first induction coil disposed proximate the first sidewall and disposed around the first sidewall. The plasma source includes a first radio frequency power generator coupled with the first induction coil. The plasma source includes a second induction coil disposed proximate the second sidewall and disposed around the second sidewall. The plasma source includes a second radio frequency power generator coupled with the second induction coil.
Abstract:
Embodiments of the present disclosure generally relate to the fabrication of integrated circuits and to apparatus for use within a substrate processing chamber to improve film thickness uniformity. More specifically, the embodiments of the disclosure relate to an edge ring. The edge ring may include an overhang ring.
Abstract:
Methods for filling a substrate feature with a seamless gap fill are described. Methods comprise forming a metal film a substrate surface, the sidewalls and the bottom surface of a feature, the metal film having a void located within the width of the feature; treating the metal film with a plasma; and annealing the metal film to remove the void.