Abstract:
The present invention provides array substrate and manufacturing method thereof and display device. The manufacturing method comprises: forming patterns including active regions of first and second TFTs by patterning process on substrate; forming gate insulation layer on the substrate; forming patterns including gates of the TFTs by patterning process on the substrate; forming isolation layer on the substrate; forming, on the substrate, second contacting vias for connecting sources and drains of the TFTs to respective active regions and first contacting via for connecting gate of the second TFT to source of the first TFT; and on the substrate, forming patterns of corresponding sources and drains on the second contacting vias above active regions of the TFTs, and meanwhile forming connection line for connecting gate of the second TFT to source of the first TFT above the first contacting via above gate of the second TFT.
Abstract:
A display substrate, a method for fabricating the same, and a display panel are provided. The display substrate includes: a substrate, and a first conductive layer, at least two insulation layers, and a second conductive layer, the second conductive layer being electrically connected with the first conductive layer through via-holes, and the at least two insulation layers including a first insulation layer in contact with the first conductive layer, wherein the display substrate further includes an assisting alignment structure on the surface of the first insulation layer, and the orthographic projection of the assisting alignment structure surrounds at least part of the edge of the orthographic projection of the first via-hole in the first insulation layer on the substrate, so that the orthographic projection of the first via-hole on the first conductive layer lies within the pattern of the first conductive layer.
Abstract:
Disclosed are a display panel, a manufacturing method therefor, and a display apparatus. The display panel comprises: a base substrate (10); a padding layer (20) arranged at one side of the base substrate (10); a thin film transistor structure layer (30) arranged at one side of the base substrate (10); a planar layer (40) arranged at the side of the thin film transistor structure layer (30) away from the base substrate (10); an organic electroluminescent device (50) arranged at the side of the planar layer (40) away from the base substrate (10), the organic electroluminescent device (50) comprising an anode (51), an effective light emission layer (52), and a cathode (53) in a layered arrangement; an auxiliary electrode (60) arranged on the side of the thin film transistor structure layer (30) away from the base substrate (10).
Abstract:
A light-emitting substrate includes; a base, an isolation portion disposed on the base and located in an isolation region located outside a light-emitting region, and a second insulating pattern located in the light-emitting region. The isolation portion includes a first conductive pattern, a second conductive pattern and a first insulating pattern that are sequentially stacked on the base; an orthogonal projection of the first conductive pattern on the base is located within an orthogonal projection of the second conductive pattern on the base; and a side face of the first conductive pattern proximate to the light-emitting region and a corresponding side face of the second conductive pattern proximate to the light-emitting region have a first gap therebetween. A side face of the second insulating pattern proximate to the first insulating pattern and a side face of the first insulating pattern proximate to the second insulating pattern have a second gap therebetween.
Abstract:
A thin film transistor, a method for fabricating the same, a display panel and a display device are disclosed. The method includes forming an active layer on a substrate; forming an insulating layer on the active layer and an exposed surface of the substrate; forming a first conductive layer on the insulating layer; patterning the first conductive layer and the insulating layer to form a first stack on the active layer, wherein the first stack includes a first portion of the first conductive layer and a first portion of the insulating layer, the first stack acts as a gate stack and the active layer includes a channel region below the gate stack and a source region and a drain region at two sides of the channel region; and performing plasma treatment on the first conductive layer, the source region and the drain region, to improve conductivity.
Abstract:
The present invention provides an array substrate and a method of fabricating the same, a display panel and a display device. The array substrate array substrate includes a thin film transistor and a zinc oxide layer provided above and/or below an active layer of the thin film transistor, and a vertical projection of the zinc oxide layer on the array substrate is at least overlapped with the vertical projection of the active layer on the array substrate The zinc oxide layer has good absorption on UV light, so that adverse effects of UV light irradiation on a threshold voltage of the TFT of the array substrate are effectively avoided.
Abstract:
A thin film transistor is provided. An active layer (3) of the thin film transistor is made of an amorphous phosphide semiconductor material. Due to high carrier mobility of the phosphide semiconductor material, a thin film transistor with a high carrier mobility can be obtained by employing the amorphous phosphide semiconductor material to prepare the active layer of the thin film transistor. A method for manufacturing such a thin film transistor, and an array substrate and a display panel each comprising such a thin film transistor, are further provided.
Abstract:
An apparatus and method for coating an organic film are disclosed. The apparatus comprises an evaporation device, an electron emission device and a spray device; wherein the evaporation device comprises an evaporation container, the evaporation container is a linear evaporation container, in which a uniform organic gas is generated; the electron emission device is horizontally arranged over the evaporation container such that the organic gas evaporated in the evaporation container is uniformly charged and becomes charged organic gas; the spray device is provided with an electric field, under which the charged organic gas is moved toward a substrate so as to deposit the organic film on the substrate.
Abstract:
The present disclosure provides a display substrate, a manufacturing method thereof and a display device. The display substrate includes a base substrate, a plurality of groups of scanning lines extending along a first direction and arranged along a second direction, and a reference signal line extending along the second direction at an end of each scanning line, and an orthogonal projection of the reference signal line onto the base substrate does not overlap with an orthogonal projection of each scanning line onto the base substrate. The scanning lines include a target scanning line for discharging static electricity and including an electrostatic discharge end arranged at a side of the target scanning line close to the reference signal line, the display substrate further includes an electrostatic discharge structure electrically coupled to the electrostatic discharge end and an electrostatic ring and arranged between the electrostatic discharge end and the reference signal line.
Abstract:
Provided is drive backplane. The drive backplane includes: a substrate, including a plurality of light transmitting regions and a plurality of sub-pixel regions; a pixel drive circuit and an anode block that are disposed in the sub-pixel region, the pixel drive circuit being electrically connected to the anode block; and repair lines and repair electrodes that are disposed in the light transmitting regions, an end of the repair line being spaced from the repair electrode; wherein, an end, departing from the repair electrode, of the repair line is electrically connected to the anode block in a first sub-pixel region, the repair electrode is electrically connected to the anode block in a second sub-pixel region.