Abstract:
A thin film transistor, a method of fabricating the same, an array substrate and a display device are disclosed. The method of fabricating the thin film transistor comprises: forming a semiconductor layer; forming a conductive film that does not react with acid solution on the semiconductor layer to be employed as a protective layer; forming a source electrode and a drain electrode on the protective layer; and removing a portion of the protective layer between the source electrode and the drain electrode to expose a portion of the semiconductor layer between the source electrode and the drain electrode.
Abstract:
An array substrate and a display device are disclosed. The array substrate includes a peripheral area in which a plurality of gate electrode material lines, a plurality of source-drain electrode material lines and a plurality of first metal lines are disposed. Overlapping areas are provided between or among the gate electrode material lines, the source-drain material lines and the first metal lines; a number of the overlapping areas of the source-drain material lines and the first metal lines is less than a number of the overlapping areas of the source-drain material lines and the gate electrode material lines; the gate electrode material lines, the source-drain material lines and the first metal lines are configured as connecting lines of circuits in the peripheral area.
Abstract:
Embodiments of the present invention disclose a thin film transistor and a manufacturing method thereof, an array substrate, and a display device, which relates to the field of display technology, and solves the problem that the adhesion of the electrode thin film with the adjacent thin film layer in the thin film transistor of the prior art is relatively bad. More specifically, an embodiment of the present invention provides a thin film transistor, comprising a gate, a source, a drain and a buffer layer, the buffer layer is located at one side or two sides of the gate, the source or the drain, the material of the buffer layer is a copper alloy material, the copper alloy material contains nitrogen element or oxygen element, the copper alloy material further contains aluminum element.
Abstract:
A bottom-emitting substrate, a display device and a method for manufacturing the bottom emitting substrate are provided. The bottom-emitting substrate comprises: a base substrate (1); a black matrix layer (2) with a plurality of opening regions and a plurality of non-opening regions disposed on the base substrate (1); and an array substrate unit disposed on the black matrix layer (2), projections of metal layers in the array substrate unit on the black matrix layer (2) locating within the plurality of non-opening regions of the black matrix layer (2). A method for manufacturing the bottom-emitting substrate and a display device comprising the bottom-emitting substrate are also provided.
Abstract:
The present invention provides a thin film transistor and a method of fabricating the thin film transistor, an array substrate and a method of fabricating the array substrate, and a display device. The thin film transistor includes a substrate and a gate, an insulation layer, an active layer, a source and a drain which are provided on the substrate. A spacer layer is also provided between the gate and the active layer, and the spacer layer overlaps at least with one of the gate and the active layer having a smaller area in an orthographic projection direction. The spacer layer can effectively prevent material forming the gate from being diffused into the active layer, thereby ensuring stability of performance of the thin film transistor. In the array substrate utilizing the thin film transistor, the spacer layer further extends to a region corresponding to a gate line.
Abstract:
The present disclosure discloses an X-ray flat-panel detector and a method for preparing the same, and a white insulating material. The X-ray flat-panel detector includes: a thin-film transistor substrate; an insulating reflection layer, which is provided on the thin-film transistor substrate and has a reflection function, wherein the insulating reflection layer is provided with a contact hole through which a source electrode of the thin-film transistor substrate is exposed; a pixel electrode, which is provided on the insulating reflection layer, wherein the pixel electrode is electrically connected to the source electrode of the thin-film transistor substrate via the contact hole; a photodiode, which covers the pixel electrode; an electrode, which is provided on the photodiode; and an X-ray conversion layer, which is provided on the electrode.
Abstract:
The present disclosure discloses a pixel structure and a preparation method thereof, a pixel display method and an array substrate. The pixel structure comprises: a thin film transistor TFT for controlling a Micro-Electro-Mechanical System MEMS switch; the Micro-Electro-Mechanical System MEMS switch being used for controlling transmission amount of outgoing light of a quantum dot light emitting diode QLED device; the quantum dot light emitting diode QLED device being a top emission type for emitting light constantly based on a constant light emitting driving signal.
Abstract:
Disclosed are a composite material and a method for preparing the same. The composite material is consisted of TiO2 and BaZn1.2Co0.8Fe16O27. The composite material of the invention has the advantages of high absorption frequency band, good compatibility and wide frequency band, and it is applicable for the shell protection material of a mobile phone or a TV set, thereby absorbing the electromagnetic wave band that is the most harmful to human bodies, without influencing the normal communication function of an electronic device, for example, a mobile phone.
Abstract:
An array substrate, a manufacturing method thereof and a display device are disclosed. The array substrate comprises a plurality of pixel unit regions each including a thin-film transistor (TFTs) and a pixel electrode. A first insulating layer provided with a first through hole and a second through hole is formed between an active layer of the TFT and the pixel electrode. A source electrode of the TFT is connected with the active layer through the first through hole. A drain electrode of the TFT is lapped onto the pixel electrode and connected with the active layer through the second through hole. The array substrate can prevent the oxidization of metal such as copper in the process of patterning a transparent conductive film.
Abstract:
The present disclosure provides an X-ray flat panel detector including: a base substrate; thin film transistors (TFTs), a pixel electrode layer, photodiodes, a transparent electrode layer, and an X-ray conversion layer which are arranged on the base substrate; and an electric field application portion configured to generate an electric field, wherein the photodiodes are arranged in the electric field, and a moving direction of negative charges when visible light rays are converted to electrical signals by the photodiodes is substantially same as a direction of the electric field. In this detector, it is applied a direction of the electric field which is substantially same as the moving direction of negative charges in the photodiode, so that movement of holes and electrons of the photodiode may be accelerated under an influence of the electric field, and thus the electrical signal may promptly arrive at the pixel electrode. As a result, it is improved the quantum detection efficiency and the sensitivity of the X-ray flat panel detector.