Abstract:
An electric vehicle and an integrated control system thereof are provided. The control system comprises: a power battery; a high-voltage distribution box connected with power battery; an integrated driving and charge-discharge controller connected with the power battery via the high-voltage distribution box, connected with a motor and a charge-discharge socket respectively, and configured to drive the motor when the electric vehicle is in a driving mode and to control to charge and discharge the power battery via the charge-discharge socket when the electric vehicle is in a charge-discharge mode; an auxiliary high-voltage element connected with the power battery via the high-voltage distribution box; a DC/DC module connected with the power battery via the high-voltage distribution box; and a controller connected with the high-voltage distribution box and configured to control the high-voltage distribution box so as to perform a pre-charging via the high-voltage box before the integrated driving and charge-discharge controller, the auxiliary high-voltage element and the first DC/DC module are powered on.
Abstract:
A discharging apparatus for an electric vehicle and an electric vehicle are provided. The discharging apparatus comprises: an AC charging interface; a charging connection device, configured to transmit an AC output from the AC charging interface to another electric vehicle; an instrument, configured to send a discharging preparation instruction; a controller, configured to detect whether the charging connection device is connected with the AC charging interface, and if yes, to emit a PWM wave and to switch to an external discharging mode; a battery manager, configured to control an external discharging circuit in a high-voltage distribution box of the electric vehicle to be connected after the controller switches to the external discharging mode; a power battery, configured to provide a DC via the external discharging circuit.
Abstract:
A discharging apparatus for an electric vehicle and an electric vehicle are provided. The discharging apparatus comprises: an AC charging interface; a charging connection device, having a first terminal connected with the AC charging interface and a second terminal connected with an exterior equipment, and configured to transmit an AC output from the AC charging interface to the exterior equipment; an instrument, configured to send a discharging preparation instruction; a controller, configured to detect whether the charging connection device is connected with the AC charging interface, and if yes, to switch to an external discharging mode; a battery manager, configured to control an external discharging circuit in a high-voltage distribution box of the electric vehicle to be connected after the controller switches to the external discharging mode; a power battery, connected with the high-voltage distribution box and configured to provide a DC via the external discharging circuit.
Abstract:
A method for controlling a power battery is provided. The method includes: detecting a maximum temperature and a minimum temperature of the plurality of single cells, a plurality of first temperatures of positive electrodes and/or a plurality of second temperatures of negative electrodes, and a plurality of third temperatures of cores; determining whether the plurality of first temperatures and/or the plurality of second temperatures are within a first temperature range; determining whether the plurality of third temperatures are within a second temperature range; managing the power battery; and determining that a connection failure occurs in the power battery if one of the plurality of first temperatures and/or one of the plurality of second temperatures is not within the first temperature range; and determining a core related failure if the third temperature of a first single cell is not within the second temperature range. Further, a system for controlling a power battery is provided.
Abstract:
A power system of an electric vehicle, an electric vehicle including the power system and a method for heating a battery group of the electric vehicle are provided. The power system of the electric vehicle includes: a battery group; a battery heater connected with the battery group; a battery management device connected with the battery group and the battery heater respectively, and configured to control the battery heater (102) to heat the battery group intermittently when a temperature of the battery group is lower than a first temperature threshold and a residual electric quantity of the battery group is larger than an electric quantity threshold; an electric distribution box; a motor; a motor controller connected with the motor and the electric distribution box respectively; and an isolation inductor.
Abstract:
A discharging apparatus for an electric vehicle and an electric vehicle are provided. The discharging apparatus comprises: an AC charging interface; a charging connection device, configured to transmit an AC output from the AC charging interface to another electric vehicle; an instrument, configured to send a discharging preparation instruction; a controller, configured to detect whether the charging connection device is connected with the AC charging interface, and if yes, to emit a PWM wave and to switch to an external discharging mode; a battery manager, configured to control an external discharging circuit in a high-voltage distribution box of the electric vehicle to be connected after the controller switches to the external discharging mode; a power battery, configured to provide a DC via the external discharging circuit.
Abstract:
The present disclosure discloses a temperature adjustment method including: obtaining a required power for temperature adjustment on a battery; obtaining an actual power for temperature adjustment on the battery; and adjusting a temperature of the battery according to the required power for temperature adjustment and the actual power for temperature adjustment. The present disclosure may precisely control a temperature adjustment time of the battery, and the actual power for temperature adjustment on the battery is adjustable in real time, so that a heating power and a cooling power of the vehicle-mounted battery may be precisely controlled according to an actual status of the vehicle-mounted battery, thereby adjusting the temperature of the vehicle-mounted battery when the temperature is excessively high or excessively low, maintaining the temperature of the vehicle-mounted battery within a preset range, and avoiding a case of affecting performance of the vehicle-mounted battery because of the temperature.
Abstract:
A power battery device includes: a battery tray having a positioning member provided on the upper surface thereof; and a plurality of battery modules disposed on the battery tray and arranged in at least two layers in an up-down direction, each battery module comprising: a housing having a first positioning portion disposed on the upper surface of the housing and a second positioning portion disposed on the lower surface of the housing; a battery disposed within the housing, the first positioning portion of the housing in a lower layer is matched with the second positioning portion of the housing in an upper layer, and the battery modules in the lowermost layer of the battery modules are positioned by the positioning member.
Abstract:
A housing assembly for a battery module includes a plurality of brackets disposed side by side in the front-rear direction and connected by a snap, and each two adjacent brackets defining a space for receiving the battery; a plurality of copper bars disposed vertically on the brackets and having a through-hole adapted for extending an electrode of the battery; and a plurality of insulating frames disposed on the copper bars to cover the electrodes of the batteries; wherein the insulating frame is connected with the bracket by a snap and has an extension direction as same as that of the copper bar. A battery module including the housing assembly is also provided.
Abstract:
A power system of an electric vehicle, an electric vehicle including the same, and a method for heating a battery group of the electric vehicle are provided. The power system includes: a battery group; a battery heater connected with the battery group; a battery management device, configured to control the battery heater to heat the battery group when a temperature of the battery group is lower than a first heating threshold and a residual electric quantity of the battery group is larger than a running electric quantity threshold, to obtain a current throttle depth change rate of an electric vehicle in real time, and to control the battery heater to stop heating the battery group when the current throttle depth change rate reaches a preset throttle depth change rate threshold; an electric distribution box; a motor; a motor controller; and an isolation inductor.